• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 992
  • 354
  • 314
  • 132
  • 38
  • 38
  • 38
  • 38
  • 38
  • 37
  • 27
  • 25
  • 12
  • 10
  • 7
  • Tagged with
  • 2404
  • 941
  • 364
  • 313
  • 302
  • 249
  • 215
  • 214
  • 178
  • 171
  • 170
  • 156
  • 154
  • 141
  • 138
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Mesoscale Hydrological Model Validation and Verification using Stable Water Isotopes: The isoWATFLOOD Model

Stadnyk-Falcone, Tricia Anne 10 September 2008 (has links)
This thesis develops a methodology for mesoscale model verification and validation that is founded on the rigorous constraint imposed by the need to conserve both water mass and isotopes simultaneously. The isoWATFLOOD model simulates δⁱ⁸O in streamflow, which effectively reduces and constrains errors associated with equifinality in streamflow generation by improving internal parameterizations. The WATFLOOD model is a conceptually-based distributed hydrological model used for simulating streamflow on mesoscale watersheds. Given the model’s intended application to mesoscale hydrology, it remains crucial to ensure conceptualizations are physically representative of the hydrologic cycle and the natural environment. Stable water isotopes because of their natural abundance and systematic fractionation have the ability to preserve information on water cycling across large domains. Several coordinated research projects have recently focused on integrating stable water isotopes into global and regional circulation models, which now provides the opportunity to isotopically force land-surface and hydrological models. Where traditionally streamflows are the primary validation criteria in hydrological modelling, problems arise in remote and ungauged basins, or large watersheds where streamflows may not be well monitored. By streamflow validation alone, no insight is obtained on the internal apportioning and physical representation of sub-processes contributing to streamflow. The primary goal of this research is to develop alternative measures to parameterize mesoscale hydrological models in a physically-based manner, and to validate such models over large domains. This research develops improved model parameterizations that facilitate realistic runoff generation process contributions. The examination of runoff generation processes and the subsequent δⁱ⁸O of these processes are performed for two mesoscale watersheds: Fort Simpson, NWT and the Grand River Basin, ON. The isoWATFLOOD model is shown to reliably predict streamflow and δⁱ⁸O of streamflow, and simulates mesoscale isotopic fractionation associated with evaporation. In doing so, a more physically meaningful, robust modelling tool is developed that is practical for operational use. This research also contributes the first continuous record of δⁱ⁸O in streamflow that enables the visualization of spatial and temporal variability and dominant hydrologic controls within mesoscale watersheds.
332

Stable Isotope Characterization and Proxy Records of Hypoxia-Susceptible Waters on the Texas-Louisiana Shelf

Strauss, Josiah 2010 December 1900 (has links)
Hypoxia, with dissolved oxygen levels < 1.4 ml L-1, is a recurring summer feature of Louisiana shelf bottom waters. Stable isotope characterization (delta^18O and delta D) of surface waters over the hypoxic zone shows a shift of dominant river influence from the Mississippi River during April to the Atchafalaya in July. Carbon isotopes of dissolved inorganic carbon (δ13CDIC) in bottom waters reveal the respiration of terrestrial organic carbon (OC) at inshore localities of 10 m depth and the respiration of marine OC at depths equal to and greater than 20 m. delat^18O and delta^13C profiles of Louisiana shelf Conus shells collected in 1972 show no evidence for summer hypoxia. Comparison with modern Conus records reveal a delta^13CDIC reduction during the last four decades associated with intrusion of ^13C-depleted fossil fuel CO2. Summer delta^13C reductions in Texas shelf Pteria shells may imply dissolved oxygen (DO) was reduced by ≈0.7 ml L-1, although this may be attributed to influence of Brazos River discharge on shell delta^18O and delta^13C. Foraminifera fauna measured in age-calibrated sediments from the Texas shelf reveal a low oxygen conditions on between 1960 and modern sediments. From 1950 to 1960, fauna indicate oxygenated bottom waters. Contemporaneous increases of foraminifera delta^13Cand delta^18O suggest this event is associated with severe drought (the Little Dust Bowl). The synchronicity of these data suggests a link between Brazos River discharge and shelf hypoxia.
333

Structure, fonctionnement, évolution des communautés benthiques des fonds meubles exploités du plateau continental Nord Gascogne

Le Loc'h, François Hily, Christian. January 2004 (has links) (PDF)
Thèse doctorat : Océanologie biologique : Brest : 2004. / Bibliogr. p. 305-326.
334

Development of a quadrupole ion trap mass spectrometer for the determination of stable isotope ratios : application to a space-flight opportunity.

Barber, Simeon James. January 1998 (has links)
Thesis (Ph. D.)--Open University. BLDSC no. DX225509.
335

An experimental calibration of chlorine isotope fractionation between amphibole and fluid at 700 °C and 0.2 GPa

Cisneros, Miguel 30 October 2013 (has links)
A Cl stable isotope fractionation factor between amphibole and fluid has been determined at 700 °C and 0.2 GPa. Rates of isotope exchange between pargasite and water at 600-800 °C were slow; therefore synthesis of amphibole in the presence of a fluid was necessary to facilitate the incorporation of Cl into amphibole. Hastingsite was synthesized from an oxide mixture and reacted with a NaCl-bearing supercritical fluid for periods of 3 to 14 days, approximately at the wüstite-magnetite buffer. Based on these synthesis-reaction experiments, the fractionation between hastingsite and a NaCl-bearing solution (~20000 ppm Cl) at 700 °C is 103lnαamphibole-fluid = 0.19‰ ± 0.23‰. These data display near zero fractionation at 700 °C, but suggest that amphibole is slightly enriched in 37Cl relative to the fluid, in agreement with empirical and theoretical results. / text
336

Individual specialization and assortative mating in undifferentiated populations

Snowberg, Lisa Kathryn 04 March 2014 (has links)
Individual specialization occurs when individuals selectively consume a subset of their population's diet. Intraspecific diet variation can stabilize population and community dynamics, promote species coexistence, and increase ecosystem productivity. Ecological variation also provides the variability necessary for natural or sexual selection to act. Individual threespine stickleback select different prey from a shared environment, and this variation is not simply a result of sex, size, or spatial heterogeneity. I use longitudinal observation of stickleback foraging microhabitat to support more commonly used cross-sectional metrics. Among recaptured individuals there were correlations between microhabitat use and functional morphology, and microhabitat use and long term dietary differences between individuals. I quantify individual specialization across populations using cross-sectional sampling to understand how and why ecological variation may itself be variable. All populations showed significant individual specialization. Specialization varied between populations and this variation seems to be a long-term property of populations. Overall morphological variance was positively correlated with ecological variation. Ecological variation, like all types of heritable variation, provides raw material for evolutionary change. For example, lacustrine populations of stickleback are commonly under disruptive selection due to intraspecific competition for prey resources. Speciation with gene flow may be driven by a combination of positive assortative mating and disruptive selection, particularly if selection and assortative mating act on the same trait. We present evidence that stickleback exhibit assortative mating by diet, using the isotopes of males and eggs within their nests. In concert with disruptive selection, this assortative mating should facilitate divergence. However, the population remains phenotypically unimodal, highlighting the fact that assortative mating and disruptive selection do not guarantee evolutionary divergence and speciation. There are several not-mutually-exclusive mechanisms by which assortative mating by diet may occur in these populations, such as shared microhabitat preference among individuals of similar diet. Stable isotopes reveal diet differences between different nesting areas and among individuals using different nest habitat within a nesting area. Spatial segregation of diet types may generate some assortative mating, but is insufficient to explain the observed assortment strength. We therefore conclude that sticklebacks' diet-assortative mating arises primarily from behavioral preference rather than from spatial isolation. / text
337

Halogen chemistry and stable chlorine isotope composition of thermal springs and arc lavas in the Cascade arc

Cullen, Jeffery Todd 11 June 2014 (has links)
The stable isotope compositions (chlorine, oxygen, and hydrogen), major anion concentrations, and major/minor cation concentrations of 37 thermal (any spring water with temperature at least 6.5° C above mean ambient air temperature) and mineral springs from the Cascade volcanic arc system were measured in order to better determine chlorine sources within the Cascades hydrothermal systems, and thus place better constraints on halogen flux through the subduction zone. Typically, most subduction zone flux calculations have been limited to the study of the erupted magmas and gases from fumarole vents, yet magmatic discharge through thermal springs may be considerable, particularly those in the often ignored forearc. Additionally, 9 geochemically well characterized lavas from across the Mt. St. Helens/Mt. Adams region of the Cascade arc (Leeman et al. 2001, 2005) were analyzed for their halogen concentrations, as well as their Cl stable isotope composition. Cl concentrations in the thermal springs range from 6 to 13,850 ppm and have δ37Cl values that range from -0.1‰ to + 1.9‰ (average = +0.8 ± 0.4‰; error = ± 0.2‰), with no systematic variation along or across the arc. The slightly positive values (~0.0 to +0.9‰) may be explained by fluid-rock interaction with underlying lithologic units, such as 37Cl-enriched volcanic sequences, and/or serpentinites or oceanic crust of accreted oceanic terranes. Another process possibly contributing to these positive δ37Cl values, particularly those with δ37Cl > 1‰, is magmatic HCl fractionation during degassing generating an enriched 37Cl vapor which mixes with thermal waters. We cannot completely rule out slab-derived altered oceanic crustal chlorine that has degassed into the springs, although most slab Cl is believed to have already been devolatilized from the slab before reaching sub-arc depths corresponding to longitudes where these springs are located at the surface. Lavas from the Columbia transect across the arc exhibit highest Cl concentrations at the volcanic front compared to the forearc and backarc. Br, like Cl, exhibits highest concentrations along the volcanic front. F and I show a progressive decrease in concentration from forearc to backarc which may demonstrate the putative early surge of fluids/fluid mobile element loss early in subduction at relatively shallow depth. δ37Cl values range from -0.1 to +0.8‰ (error = ± 0.2‰) and may reflect a component of assimilation of crustal material, or is derived from an enriched mantle, although we cannot completely rule out some isotopic fractionation and/or slab-derived chlorine. / text
338

Patterns in seagrass coverage and community composition along the Texas coast : a three-year trend analysis

Wilson, Sara Susan 24 August 2015 (has links)
Seagrasses are extremely productive coastal plant communities that serve as habitat for various types of marine and estuarine fauna and provide numerous ecosystem services. Seagrass meadows around the world have become threatened by environmental and anthropogenic pressures such as altered hydrologic regimes, physical disturbances, and eutrophication. Monitoring programs that provide high-resolution information and document changes in cover, morphometric characteristics, species composition, and tissue nutrient content across large spatial scales are critical in global conservation and management efforts. In an attempt to address the uncertainties regarding the current distribution and condition of seagrasses in the southwest Gulf of Mexico, I conducted annual sampling from 2011-2013 to examine seagrass cover and condition at 558 permanent stations. Sampling occurred in three regions of the Texas coast: the Coastal Bend (CB), Upper Laguna Madre (ULM), and Lower Laguna Madre (LLM), which together comprise over 94% of the seagrasses in Texas. Significant trends in seagrass coverage and tissue elemental composition were highly location- and species-specific. In the CB, I did not observe significant changes in seagrass cover and no spatial patterns in tissue nitrogen (N) or phosphorus (P) were apparent. However, I observed a species shift in the northern ULM, where significant decreases in Syringodium filiforme cover were coupled with significant increases in Halodule wrightii cover. Long-term salinity records at four stations throughout the study area suggest that S. filiforme mortality in the ULM in 2013 was a product of an extended period of high salinity (> 55) that began in late 2012. In LLM, there were significant increases in H. wrightii cover in the north and significant decreases in T. testudinum cover in the south, which cannot be explained based on underwater light levels, salinity, or nutrient availability. Both H. wrightii and T. testudinum displayed lower C:N, C:P, and N:P ratios, along with enriched δ¹⁵N signatures nearest urban areas, particularly in the LLM. This study illustrates the value of integrating rapid-assessment field sampling and rigorous statistical and spatial analysis into a large-scale seagrass monitoring program to uncover patterns in seagrass community structure. I detected significant trends in seagrass coverage and condition across multiple spatial and temporal scales, including a massive species replacement that coincided with a prolonged period of hypersaline conditions.
339

ABSOLUTE RADIOMETRIC CALIBRATION OF A SPECTROPOLARIMETER.

CASTLE, KENNETH ROBERT. January 1985 (has links)
Two identical instruments have been developed for use in the field to make radiometric measurements. They have been described as spectropolarimeters because of their ability to make polarization measurements in narrow spectral passbands. They have been used as part of a NASA sponsored project to monitor the spectral and temporal response of the thematic mapper satellites. These satellites allow many natural and man-tended resources to be monitored over years of time, thus allowing their use to be planned for in the future. The dissertation discusses the design, fabrication, testing and absolute radiometric calibration of these spectropolarimeter instruments. The outstanding feature of these instruments are that they have been calibrated absolutely, for radiance measurements, to an accuracy of 2% - 3%, in the range of 400 nm to 1040 nm over selected spectral passbands. Previously, field measurements were considered good if they had an absolute accuracy of 10%, implying that the present accuracies are advancing the state-of-the-art for field instrument calibrations. These improved accuracies are the result of using two recently developed calibration standards, both of which use detector based methods. These standards are the Electrically Calibrated Pyroelectric Radiometer (ECPR), and the QED-100 quad detector. The end of the dissertation discusses the attempts made to verify that the accuracies claimed are indeed valid, and it is the author's belief that these accuracies have been verified completely.
340

From atoms to astronomy : new approaches in neutrino physics

Jerkins, Melissa Travis 14 December 2010 (has links)
In this thesis I present research in neutrino physics utilizing tools from both atomic physics and astrophysics. Recent advances in atomic physics enable a new type of beta decay experiment to measure the absolute mass scale of the neutrino using a sample of ultracold atomic tritium. These initial conditions enable the detection of the helium ion in coincidence with the beta. I construct a two-dimensional fit incorporating both the shape of the beta spectrum and the direct reconstruction of the neutrino mass peak. I present simulation results of the feasible limits on the neutrino mass achievable in this new type of tritium beta decay experiment. The same advances in atomic physics that enable the creation of an atomic source for tritium beta decay also suggest a new method of achieving large-scale isotope separation. Multiple experiments that are investigating the absolute mass scale of the neutrino through neutrinoless double beta decay could benefit from this new technique, which applies generally to many elements, including the double beta emitter Nd-150 that is particularly difficult to separate in large quantities. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in a supersonic atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. I present numerical simulations of isotope separation for a range of examples and demonstrate that large-scale isotope separation should be possible using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers. Additionally I report results from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory (SNO). Such bursts could indicate detection of a nearby core-collapse supernova explosion. The data were taken from November 1999 to May 2001 when the detector was filled with heavy water (Phase I), as well as data from July 2001 to August 2003 when NaCl was added to the detector (Phase II). The search was a blind analysis in which the potential backgrounds were estimated and analysis cuts were developed to eliminate such backgrounds with 90% confidence before the data were examined. The search maintained a greater than 50% detection probability for standard supernovae occurring at a distance of up to 60 kpc for Phase I and up to 70 kpc for Phase II. No low-multiplicity bursts were observed during the data-taking period. / text

Page generated in 0.0377 seconds