• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • Tagged with
  • 27
  • 19
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iwasawa theory of r-adic [rho-adic] Lie extensions

Venjakob, Otmar. January 2000 (has links) (PDF)
Heidelberg, Univ., Diss., 2001. / Computerdatei im Fernzugriff.
2

Iwasawa theory of r-adic [rho-adic] Lie extensions

Venjakob, Otmar. January 2000 (has links) (PDF)
Heidelberg, Univ., Diss., 2001. / Computerdatei im Fernzugriff.
3

Iwasawa theory of r-adic [rho-adic] Lie extensions

Venjakob, Otmar. January 2000 (has links) (PDF)
Heidelberg, University, Diss., 2001.
4

A new approach to the investigation of Iwasawa invariants

Kleine, Sören 16 December 2014 (has links)
No description available.
5

The Change in Lambda Invariants for Cyclic p-Extensions of Z(p)-Fields

Schettler, Jordan Christian January 2012 (has links)
The well-known Riemann-Hurwitz formula for Riemann surfaces (or the corresponding formulas of the same name for curves/function fields) is used in genus computations. In 1979, Yûji Kida proved a strikingly analogous formula in [Kid80] for p-extensions of CM-fields (p an odd prime) which is similarly used to compute Iwasawa λ -invariants. However, the relationship between Kida’s formula and the statement for surfaces is not entirely clear since the proofs are of a very different flavor. Also, there were a few hypotheses for Kida’s result which were not fully satisfying; for example, Kida’s formula requires CM-fields rather than more general number fields and excludes the prime p = 2. Around a year after Kida’s result was published, Kenkichi Iwasawa used Galois cohomology in [Iwa81] to establish a more general formula (about representations) that did not exclude the prime p = 2 nor need the CM-field assumption. Moreover, Kida’s formula follows as a corollary from Iwasawa’s formula. We’ll prove a slight generalization of Iwasawa’s formula and use this to give a new proof of a result of Kida in [Kid79] and Ferrero in [Fer80] which computes λ-invariants in imaginary quadratic extensions for the prime p = 2. We go on to produce special generalizations of Iwasawa’s formula in the case of cyclic p-extensions; these formulas can be realized as statements about Q(p)-representations, and, in the cases of degree p or p², about p-adic integral representations. One upshot of these formulas is a vanishing criterion for λ-invariants which generalizes a result of Takashi Fukuda et al. in [FKOT97]. Other applications include new congruences and inequalities for λ-invariants that cannot be gleaned from Iwasawa’s formula. Lastly, we give a scheme theoretic approach to produce a general formula for finite, separable morphisms of Dedekind schemes which simultaneously encompasses the classical Riemann-Hurwitz formula and Iwasawa’s formula.
6

Some results in Iwasawa Theory and the p-adic representation theory of p-adic GL₂

Kidwell, Keenan James 25 June 2014 (has links)
This thesis is divided into two parts. In the first, we generalize results of Greenberg-Vatsal on the behavior of algebraic lambda-invariants of p-ordinary modular forms under congruence. In the second, we generalize a result of Emerton on maps between locally algebraic parabolically induced representations and unitary Banach space representations of GL₂ over a p-adic field. / text
7

Iwasawa theory for elliptic curves with cyclic isogenies /

Nichifor, Alexandra. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 55-56).
8

The split prime μ-conjecture and further topics in Iwasawa theory

Crisan, Vlad-Cristian 04 March 2019 (has links)
No description available.
9

Selmer groups for elliptic curves with isogenies of prime degree /

Mailhot, James Michael. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 65-68).
10

Classifying Lambda-modules up to Isomorphism and Applications to Iwasawa Theory

January 2011 (has links)
abstract: In Iwasawa theory, one studies how an arithmetic or geometric object grows as its field of definition varies over certain sequences of number fields. For example, let $F/\mathbb{Q}$ be a finite extension of fields, and let $E:y^2 = x^3 + Ax + B$ with $A,B \in F$ be an elliptic curve. If $F = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots F_\infty = \bigcup_{i=0}^\infty F_i$, one may be interested in properties like the ranks and torsion subgroups of the increasing family of curves $E(F_0) \subseteq E(F_1) \subseteq \cdots \subseteq E(F_\infty)$. The main technique for studying this sequence of curves when $\Gal(F_\infty/F)$ has a $p$-adic analytic structure is to use the action of $\Gal(F_n/F)$ on $E(F_n)$ and the Galois cohomology groups attached to $E$, i.e. the Selmer and Tate-Shafarevich groups. As $n$ varies, these Galois actions fit into a coherent family, and taking a direct limit one obtains a short exact sequence of modules $$0 \longrightarrow E(F_\infty) \otimes(\mathbb{Q}_p/\mathbb{Z}_p) \longrightarrow \Sel_E(F_\infty)_p \longrightarrow \Sha_E(F_\infty)_p \longrightarrow 0 $$ over the profinite group algebra $\mathbb{Z}_p[[\Gal(F_\infty/F)]]$. When $\Gal(F_\infty/F) \cong \mathbb{Z}_p$, this ring is isomorphic to $\Lambda = \mathbb{Z}_p[[T]]$, and the $\Lambda$-module structure of $\Sel_E(F_\infty)_p$ and $\Sha_E(F_\infty)_p$ encode all the information about the curves $E(F_n)$ as $n$ varies. In this dissertation, it will be shown how one can classify certain finitely generated $\Lambda$-modules with fixed characteristic polynomial $f(T) \in \mathbb{Z}_p[T]$ up to isomorphism. The results yield explicit generators for each module up to isomorphism. As an application, it is shown how to identify the isomorphism class of $\Sel_E(\mathbb{Q_\infty})_p$ in this explicit form, where $\mathbb{Q}_\infty$ is the cyclotomic $\mathbb{Z}_p$-extension of $\mathbb{Q}$, and $E$ is an elliptic curve over $\mathbb{Q}$ with good ordinary reduction at $p$, and possessing the property that $E(\mathbb{Q})$ has no $p$-torsion. / Dissertation/Thesis / Ph.D. Mathematics 2011

Page generated in 0.0385 seconds