• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • Tagged with
  • 27
  • 19
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Non-commutative Iwasawa theory of elliptic curves at primes of multiplicative reduction

Lee, Chern-Yang January 2010 (has links)
Let E be an elliptic curve defined over the rationals Q, and p be a prime at least 5 where E has multiplicative reduction. This thesis studies the Iwasawa theory of E over certain false Tate curve extensions F[infinity], with Galois groupG = Gal(F[infinity]/Q). I show how the p[infinity]-Selmer group of E over F[infinity] controls the p[infinity]-Selmer rank growth within the false Tate curve extension, and how it is connected to the root numbers of E twisted by absolutely irreducible orthogonal Artin representations of G, and investigate the parity conjecture for twisted modules.
12

One- and Two-Variable $p$-adic Measures in Iwasawa Theory

January 2015 (has links)
abstract: In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves. In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures. This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2015
13

K(1)-local Iwasawa theory /

Hahn, Rebekah D. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 79-80).
14

Iwasawa theory of p-adic Lie extensions

Venjakob, Otmar. January 2001 (has links)
Heidelberg, Univ., Diss., 2001.
15

On Minimal Levels of Iwasawa Towers

January 2013 (has links)
abstract: In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits. / Dissertation/Thesis / Ph.D. Mathematics 2013
16

Invariants d’Iwasawa dans les extensions de Lie p-adiques des corps de nombres / Iwasawa invariants in p-adic Lie extensions of number fiels

Perbet, Guillaume 06 December 2011 (has links)
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa / This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie extensions of number fields. These invariants where introduced by Iwasawa for Zp-extensions. In his work on the structure of modules over the Iwasawa algebra of a p-adic Lie group, Venjakob extends the definition to the non commutative theory. Using descent techniques, along with a fine algebraic study of Iwasawa's modules structure over a non commutative group, we obtain asymptotic formulas for generalized p-class groups in a tower of number fields, with a p-valued group as Galois group. These formulas have Iwasawa invariants as parameters. They become more precise for Zp-extensions, where a significant descent default is involved. These asymptotic results are exploited thanks to reflexion theory. This leads to duality formulas between ramification and decomposition for Iwasawa invariants
17

Iwasawa algebras for p-adic Lie groups and Galois groups / Algèbres d’Iwasawa pour les groupes de Lie p-adiques et les groupes de Galois

Ray, Jishnu 02 July 2018 (has links)
Un outil clé dans la théorie des représentations p-adiques est l'algèbre d'Iwasawa, construit par Iwasawa pour étudier les nombres de classes d'une tour de corps de nombres. Pour un nombre premier p, l'algèbre d'Iwasawa d'un groupe de Lie p-adique G, est l'algèbre de groupe G complétée non-commutative. C'est aussi l'algèbre des mesures p-adiques sur G. Les objets provenant de groupes semi-simples, simplement connectés ont des présentations explicites comme la présentation par Serre des algèbres semi-simples et la présentation de groupe de Chevalley par Steinberg. Dans la partie I, nous donnons une description explicite des certaines algèbres d'Iwasawa. Nous trouvons une présentation explicite (par générateurs et relations) de l'algèbre d'Iwasawa pour le sous-groupe de congruence principal de tout groupe de Chevalley semi-simple, scindé et simplement connexe sur Z_p. Nous étendons également la méthode pour l'algèbre d'Iwasawa du sous-groupe pro-p Iwahori de GL (n, Z_p). Motivé par le changement de base entre les algèbres d'Iwasawa sur une extension de Q_p nous étudions les représentations p-adiques globalement analytiques au sens d'Emerton. Nous fournissons également des résultats concernant la représentation de série principale globalement analytique sous l'action du sous-groupe pro-p Iwahori de GL (n, Z_p) et déterminons la condition d'irréductibilité. Dans la partie II, nous faisons des expériences numériques en utilisant SAGE pour confirmer heuristiquement la conjecture de Greenberg sur la p-rationalité affirmant l'existence de corps de nombres "p-rationnels" ayant des groupes de Galois (Z/2Z)^t. Les corps p-rationnels sont des corps de nombres algébriques dont la cohomologie galoisienne est particulièrement simple. Ils sont utilisés pour construire des représentations galoisiennes ayant des images ouvertes. En généralisant le travail de Greenberg, nous construisons de nouvelles représentations galoisiennes du groupe de Galois absolu de Q ayant des images ouvertes dans des groupes réductifs sur Z_p (ex GL (n, Z_p), SL (n, Z_p ), SO (n, Z_p), Sp (2n, Z_p)). Nous prouvons des résultats qui montrent l'existence d'extensions de Lie p-adiques de Q où le groupe de Galois correspond à une certaine algèbre de Lie p-adique (par exemple sl(n), so(n), sp(2n)). Cela répond au problème classique de Galois inverse pour l'algèbre de Lie simple p-adique. / A key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions.
18

Calculs explicites en théorie d'Iwasawa / Explicit computing in Iwasawa theory

Varescon, Firmin 11 June 2014 (has links)
Dans le premier chapitre de cette thèse on rappelle l'énoncé ainsi que des équivalents de la conjecture de Leopoldt puis l'on donne un algorithme permettant de vérifier cette conjecture pour un corps de nombre et premier donnés. Pour la suite on suppose cette conjecture vraie pour le premier p fixé Et on étudie la torsion du groupe de Galois de l'extension abélienne maximale p-ramifiée. On présente une méthode qui détermine effectivement les facteurs invariants de ce groupe fini. Dans le troisième chapitre on donne des résultats numériques que l'on interpréte via des heuristiques à la Cohen-Lenstra. Dans le quatrième chapitre, à l'aide de l'algorithme qui permet le calcul de ce module, on donne des exemples de corps et de premiers vérifiant la conjecture de Greenberg. / In the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture.
19

p-adic Measures for Reciprocals of L-functions of Totally Real Number Fields

Razan Taha (11186268) 26 July 2021 (has links)
We generalize the work of Gelbart, Miller, Pantchichkine, and Shahidi on constructing p-adic measures to the case of totally real fields K. This measure is the Mellin transform of the reciprocal of the p-adic L-function which interpolates the special values at negative integers of the Hecke L-function of K. To define this measure as a distribution, we study the non-constant terms in the Fourier expansion of a particular Eisenstein series of the Hilbert modular group of K. Proving the distribution is a measure requires studying the structure of the Iwasawa algebra.
20

Sur la structure des noyaux sauvages étales des corps de nombres

Caputo, Luca 02 April 2009 (has links)
Le but de ce travail est de présenter des résultats à propos des noyaux sauvages étales. Soit $p$ un nombre premier. Les noyaux sauvages étales d'un corps de nombres $F$ (qui sont dénotés par $WK^{ét}_{2i}(F)$ avec $i\in \mathbb{Z}$) sont des généralisations cohomologiques de la $p$-partie du noyau sauvage classique $WK_{2}(F)$, qui est le sous-groupe de $K_2(F)$ constitué par les symboles qui sont triviaux pour tout symbole de Hilbert local. Ces noyaux sauvages étales sont des $\mathbb{Z}_p$-modules et l'on sait qu'ils sont finis lorsque $i\geq 1$ (et même, suivant les conventions, si $i=0$) : on conjecture en plus qu'ils soient toujours finis (conjecture de Schneider). Dans la suite, on va supposer que cette conjecture est satisfaite. On va s'intéresser en particulier à deux problèmes. Le premier, qui est étudié dans les Chapitres 2 et 3, est la déterminations des structures de groupe qui sont réalisables comme noyaux sauvages étales. En d'autres termes, si l'on se donne un corps de nombres $F$, un $p$-groupe abélien fini $X$ et un nombre entier $i\in\mathbb{Z}$, on peut se demander s'il existe une extension finie $E/F$ telle que $WK^{ét}_{2i}(E)\cong X$. Une question semblable a été étudiée pour les $p$-groupes des classes et il y a un relation précise entre les $p$-groupes des classes et les noyaux sauvages étales. Par conséquent, on peut espérer traduire les résultats classiques dans le contexte des noyaux sauvages étales. Peut-être est-il intéressant de donner ici une courte récapitulation sur le problème de réalisation classique pour les $p$-groupes des classes. Essentiellement, deux techniques sont utilisées. D'un coté, pour un corps de nombres $F$ fixé, l'on étudie la $p$-tour des corps des classes de Hilbert de $F$ : Yahagi a montré que cette tour est infinie si et seulement s'il n'y a pas d'extensions finies $E/F$ dont le $p$-groupe des classes soit trivial. De plus, si la tour est finie, alors toute structure de $p$-groupe abélien apparaît comme $p$-groupe des classes pour quelque extension finie $E/F$. De l'autre coté, une fois que l'on sait que pour un corps de nombres $F$ fixé, il existe une extension finie dont le $p$-groupe de classes est trivial, alors on peut se servir de la théorie du corps des classes et de la théorie des genres pour trouver, pour n'importe quel $p$-groupe abélien fini $X$, une extension finie $E/F$ telle que le $p$-groupe des classes de $E$ est isomorphe à $X$. En effet, la traduction du résultat de Yahagi dans le contexte des noyaux sauvages étales n'est pas tout à fait immédiate : la relation entre le groupe des classes et le noyau sauvage étale d'un corps de nombres $F$ s'écrit dans le langage de $\Gamma$-modules, où $\Gamma$ est le groupe de Galois sur $F$ de la $\mathbb{Z}_p$-extension cyclotomique de $F(\mu_p)$. La façon la plus naturelle pour s'approcher du problème est donc de considérer le problème de réalisabilité pour les modules d'Iwasawa. Ce problème a été étudié (parmi d'autres auteurs) par Ozaki : il a montré que pour tout $\Lambda$-module fini $X$, il existe un corps de nombres $k$ tel que le module d'Iwasawa de $k$ (c'est à dire la limite projective des $p$-groupes des classes le long de la tour cyclotomique) est isomorphe à $X$. Les techniques utilisées sont inspirées à celles de Yahagi et en fait elles s'appuient d'une façon fondamentale du fait que $p$ ne divise pas le nombre des classes de $\mathbb{Q}$. Pour obtenir la traduction de ce résultat en termes de noyaux sauvages étales il faut considérer plutôt $\mathbb{Q}(\mu_p)$ -plus précisément un sous-corps convenable de $\mathbb{Q}(\mu_p)$. Bien entendu, le nombre des classes de ce sous-corps n'est plus premier avec $p$ (du moment que $p$ peut être irrégulier). D'autre part, si $p$ est régulier, la preuve d'Ozaki peut être adaptée (comme l'on montre dans le Chapitre 2). / The aim of the present work is to prove some results about étale wild kernels. Let $p$ be an odd prime. Etale wild kernels of a number field $F$ (which are denoted $WK^{ét}_{2i}(F)$ for $i\in \mathbb{Z}$) are cohomological generalizations of the $p$-part of the classical wild kernel $WK_{2}(F)$, which is the subgroup of $K_2(F)$ made up by symbols which are trivial for any local Hilbert symbol. Etale wild kernels are $\mathbb{Z}_p$-modules which are known to be finite if $i\geq1$ (and even if $i=0$, depending on the chosen convention): actually they are conjectured to be always finite (the Schneider conjecture). In the following we will suppose that this is always the case. Two problems are studied in detail. The first, which is analyzed in Chapter 2 and Chapter 3, is to determine which group structures are realizable for étale wild kernels. In other words, given a number field $F$, a finite abelian $p$-group $X$ and $i\in \mathbb{Z}$, one can ask if there exists a finite extension $E/F$ such that $WK^{ét}_{2i}(E)\cong X$. A similar problem has been studied for $p$-class groups and there are precise relations between the $p$-class group and étale wild kernels. Therefore one may expect to translate results from $p$-class groups to étale wild kernels. It is maybe useful to give here a short account on the classical realizability problem for $p$-class groups. Essentially two kind of techniques are used. On the one hand, for a fixed number field $F$, one studies the Hilbert $p$-class field tower of $F$: it has been shown by Yahagi that the Hilbert $p$-class tower of $F$ is infinite if and only if there is no finite extension $E/F$ whose $p$-class group is trivial. Furthermore, if the Hilbert $p$-class tower of $F$ is finite, then every finite abelian $p$-group structure appears as $p$-class group of some finite extension $E/F$. On the other hand, once we know that for a fixed number field $F$ there exists a finite extension whose $p$-class group is trivial, then class field theory and genus theory are used to exhibit, for any finite abelian $p$-group $X$, a finite extension $E/F$ such that the $p$-class group of $E$ is isomorphic to $X$. Actually, the translation of Yahagi's result in terms of étale wild kernels is not immediate: the relation between the class groups and étale wild kernels of a number field $F$ is expressed in terms of $\Gamma$-modules structures, where $\Gamma$ is the Galois group over $F$ of the cyclotomic $\mathbb{Z}_p$-extension of $F(\mu_p)$. The most natural way to approach the problem is then to consider the realizability problem for Iwasawa modules. This problem is studied (among many others) by Ozaki: he proved that for any finite $\Lambda$-module $X$, there exists a number field $k$ such that the Iwasawa module of $k$ (i.e. the projective limit of $p$-class groups along the cyclotomic $\mathbb{Z}_p$-extension) is isomorphic to $X$. The techniques used are inspired to those by Yahagi and actually Ozaki makes fundamental use of the fact that $p$ does not divide the class number of $\mathbb{Q}$. To get the translation of this result in terms of étale wild kernels one has to consider $\mathbb{Q}(\mu_p)$ -more precisely a suitable subfield of $\mathbb{Q}(\mu_p)$ depending on $i$- instead of $\mathbb{Q}$. Here the problem is that the class number of this suitable subfield is no more coprime with $p$ (as $p$ may be irregular). If this is not the case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2.

Page generated in 0.144 seconds