Spelling suggestions: "subject:"uppehållstillstånd""
1 |
Evaluation of the η (Eta) nitride with three laboratory meltsLind, Martin, Johansson, Cecilia January 2015 (has links)
η (eta) nitride, Cr3Ni2SiN, is a precipitate found in high temperature austenitic stainless steel and is not yet included in Thermo-Calc steel database TCFE7. The aim of this thesis is to collect thermodynamic data to enable the addition of η nitride in the databases. Three laboratory melts with varying levels of silicon, chromium and nickel have been aged at 700-1000 °C for 75 h, 300 h and 1200 h and examined by Light Optical Microscopy, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Wavelength Dispersive Spectroscopy, Electron Backscattered Diffraction and X-ray Powder Diffraction. η nitride is in the studied alloys an equilibrium phase stabilized with nitrogen. Presence of η nitride was confirmed by Energy Dispersive Spectroscopy and X-ray Powder Diffraction. It was found to precipitate in four different ways, at primary grain boundaries, intragranularly, as a "skeleton-like" precipitate and as a border around the occurring Cr2N precipitates. The area fraction of η nitrides increases with longer aging times and is favored by silicon and nickel. The composition of η nitride is not changing regardless of material composition, aging temperature and aging time. The composition of η nitride in all three materials are 8.7-9.7 wt.% silicon, 47-54 wt.% chromium, 1.4-4.1 wt.% iron and 33-36 wt.% nickel. The nitrogen content 2 determined by Wavelength Dispersive Spectroscopy is 2.8-3.2 wt.%. No complete equilibrium was achieved and together with incomplete mixing of the alloying elements during melting, the microstructure is difficult to evaluate. Other precipitates found are Cr2N, π nitride, σ phase and two unidentified phases, M and N. Of these phases at least Cr2N is not an equilibrium phase as it dissolves during aging. Further aging to achieve complete equilibrium is necessary.
|
Page generated in 0.033 seconds