• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kemisk fällning av fosfor med tvåvärt järn i kombination med aktivslam eller membranbioreaktor / Chemical precipitation of phosphorus with ferrous iron in activated sludge or membrane bioreactor

Sandberg Birgersson, Paulina January 2017 (has links)
Stockholm Vatten AB (SVAB) behöver utöka kapaciteten på avloppsreningsverket i Henriksdal. Därför kommer en membranbioreaktor (MBR) att implementeras i dagens befintliga aktivslamanläggning. Den nya anläggningen dimensioneras för att kunna hantera det förväntade flödet år 2040. Det framtida verket kommer dessutom behöva rena avloppsvatten som i dagsläget behandlas i verket i Bromma. Ytterligare förväntas utsläppskraven för fosfor (P), kväve (N) och organiskt material (BOD7) att skärpas.   För närvarande bedriver SVAB i samarbete med IVL (Svenska miljöinstitutet) en pilotanläggning i Sjöstadsverket för att undersöka hur tekniken effektivt kan implementeras i Henriksdal. En stor utmaning för att optimera driften är reningsprocessen av fosfor. Som alternativ till efterfällning av fosfor önskar Henriksdal att simultanfälla fosfor med tvåvärt järn (Fe2+) i MBR:en.   I följande arbete utreds hur kemisk fällning av fosfor med Fe2+ fungerar i kombination med aktivslam och mer specifikt, med MBR. Syftet med arbetet är att bidra med kunskap till fortsatta studier i Sjöstadsverket inför implementeringen av MBR i Henriksdal. Arbetet utreder delar inom den kunskap och forskning som finns gällande området idag och identifierar kunskapsluckor inom studiet. Fokus har bland annat legat på att beskriva; mekanismer och reaktionskinetik; utreda vilka parametrar som styr utfällningen; hur slammet och den biologiska aktiviteten påverkas; samt hur dosering av järn inverkar på MBR.   Få studier har gjorts inom området och i många fall varierar resultaten studierna emellan. Detta beror sannolikt på två faktorer: 1) Vattenmatrisen i avloppsvattnet är komplex. 2) Avloppsvattnets innehåll kan variera mycket.   Exakta reaktioner och mekanismer för hur fosfor avskiljs med järn(II)dosering är ännu inte fullständigt klarlagt. En stor del av Fe2+ som tillsätts kommer att oxideras till trevärt järn (Fe3+). Oxidationshastigheten av Fe2+ styrs främst av pH och syretillgänglighet i vatten och hastigheten varierar kraftigt med avseende på dessa parametrar. Fe2+ kan även oxideras biologiskt under anoxiska förhållanden av denitrifierare. Fosfor avskiljas i sin tur antingen direkt genom utfällning med Fe2+ eller Fe3+, eller genom adsorption till järnhydroxider.   Järn(II)dosering inverkar på slammets morfologi, sedimenteringsindex, storlek och stabilitet. Dosering med Fe2+ ger kompakta flockar med släta och täta ytor samt få utstickande filament. Fe2+ kan inverka på den biologiska aktiviteten i slammet, men där finns bevis gällande både en synergistisk inverkan och en reducerande effekt.   Generellt rekommenderas att molförhållanden över 2, Fe2+:P används för att uppnå tillräcklig avskiljning av fosfor i aktivslam. Liknande molförhållande tycks rekommenderas i MBR. Utöver doseringshalt kan även doseringspunkt inverka på både avskiljningsgraden av fosfor och nedsmutsningen av membranen.   I studien sammanställdes även en massbalans av flödet och järn i MBR-linjen i Sjöstadsverket. Ytterligare gjordes analyser på vattnet för att undersöka förhållandet   Vid massbalansen uppmärksammades att avskiljningen av fosfor är låg i förluftning (FL) och försedimentering (FS). Avskiljningsgraden låg under vad som förväntades (uppmätt 18 %, förväntad 50 %). Den låga avskiljningsgraden beror sannolikt på att FL och Fs är förhållandevis små. I MBR erhölls ett 40 % större uttag av järn jämfört med inkommande halt järn till MBR. Det bör kunna förklaras av att järnhalten i slammet under denna period var ovanligt hög.   Förhållandet mellan fria Fe2+- och Fe3+-joner analyserades i tvåpunkter, efter FL (mätpunkt 1) och efter FS (mätpunkt 2). I mätpunkt 1 hade 80 % av järnjonerna fällt ut och ca 60 % oxiderat till trevärt järn. Uppehållstiden i FL är ca 13 min.   pH mättes i hela MBR-reningslinjen. I FL och FS låg pH kring ungefär 7,5 och i MBR-reaktorerna låg pH omkring 6,5. Det förenklade hastighetsuttrycket för oxidation av järn vid syrerika förhållanden d[Fe (II)]/dt = -k􁇱[Fe(II)] användes för att beräkna den teoretiska halveringstiden (t1/2) av Fe2+. t1/2 i FL beräknades till 13 min, i FS till 22 min och i MBR-reaktorerna till omkring 2 h. Den teoretiska t1/2 stämmer relativt bra överens med vad som uppmättes vid analys av Fe2+: Fe3+. Den slutsats som kan dras är att sannolikt så kommer mer av järnet att fälla ut i sin trevärda form då järnet doseras i FL och FS, än då järnet doseras i de luftade biologiska reaktorerna.   Sammanfattningsvis, finns få studier som utreder processen för utfällning av fosfor med Fe(II) i aktivslam eller MBR. Kunskapen inom området är begränsad och det finns ännu många kunskapsluckor som behöver täckas. På grund av avloppsvattnets komplexitet räcker inte teoretisk kunskap för en effektiv implementering av MBR. / To expand the capacity of the Stockholm Vatten AB (SVAB) municipal waste water treatment plant (WWTP) “Henriksdal” a membrane bioreactor will be implemented in the existing activated sludge process. The new WWTP is dimensioned to handle the expected flow of year 2040. The future WWTP will also need to treat waste water is currently treated in Bromma. Furthermore, the effluent treatment requirements for phosphorus (P), nitrogen (N) and organic substituents is expected to become stricter.   In cooperation between SVAB and IVL (The Swedish Environmental Institute) the new treatment process is being tested in a pilot plant in Sjöstadsverket. One of the challenges in the new project is to achieve sufficient removal of phosphorus. Today Henriksdal WWTP removes phosphorus through post-precipitation with ferrous iron (Fe2+). When the MBR is implemented SVAB wants to use simultaneous precipitation in the MBR.   In this report the chemical precipitation of Fe2+ in combination with activated sludge and MBR is examined. The aim of this thesis is to aid SVAB by contributing with knowledge in the mentioned area. The report examines the knowledge and research available about the area today and identifies if there are any gaps of knowledge. Focus of the study is among other things: the reaction mechanisms and kinetics; what parameters favor efficient precipitation; how does ferrous iron integrate with the sludge; how to efficiently combine ferrous iron precipitation in MBR.   There are only a few studies in the field and the results often contradict each other. It is likely due to two factors: 1) the matrix of waste water is complex. 2) the matrix varies considerably between different areas and different WWTP’s.   The exact mechanisms and kinetics of phosphorus removal with chemical precipitation of ferrous iron are not fully understood. A lot of the Fe2+ will oxidize to ferric iron (Fe3+). The oxidation rate is mainly dependent on the pH and oxygen concentration in the water. Fe2+ can also be oxidized through biological oxidation in anoxic environments. The phosphorus is removed by direct precipitation with Fe2+ and Fe3+, or through adsorption to iron hydroxides.   Fe2+ can influence the characteristics of the sludge by changing the morphology, the size and the stability of the flocs and the settleability of the sludge. Dosing Fe2+ gives more compact flocs, with smooth surfaces and few filaments. Fe2+ can also influence the biological activity in the sludge. Some studies states the iron contributes to synergistic effects, some claim it reduces the activity.   For efficient phosphorus removal in activated sludge ratios of Fe:P > 2 mole /mole is mostly used. The recommendations seem to be the same for MBR. The dosing point also seem to be of importance to achieve sufficient removal, and furthermore to prevent fouling of the membranes.   Material balances for phosphorous and for iron, as well as analyses to examine the oxidation rate and pH of the waste water in the MBR-pilot plant were also performed. The material balance showed that the removal of phosphorous in the pre-aeration (PA) and the pre-sedimentation (PS) was low. The expected removal was 50 % while the achieved removal 18 %. This is probably due to the relatively small size of the PA and PS compared to the rest of the pilot-plant. In the MBR the outgoing flow of iron was 40 % larger than the incoming flow. During the examined weeks the iron concentration in the sludge was higher than usually. Probably iron had been accumulated in the sludge the weeks before.   The ratio between Fe2+-ions and Fe3+-ions was analyzed in two points, in the flow following the PA respectively the flow following the PS. In the PA 80 % of the ions had precipitated and 60 % of the free irons had been oxidized to Fe3+.   pH was measured in each reactor of the pilot plant. In the PA and the PS the pH was about 7.5, while in the MBR-reactors the pH was around 6.5. The theoretical half-life (t1/2) of Fe2+ was calculated from a simplified rate reaction expression for oxidation of Fe2+ in aerated waters. t1/2 in the PA was around 13 minutes, in the PS around 22 minutes and the bio reactors around 2h. The theoretical t1/2 of Fe2+ is relatively close to the measured values of the ratio between Fe2+-ions and Fe3+-ions. From the results of the studies it is likely that more of the iron will precipitate as ferric iron in the PA and PS than if the ferrous iron is dosed in the aerated bioreactors.   In conclusion: there are only very few studies that examines the precipitation process of ferrous iron in activated sludge or MBR. The theoretical knowledge is not wide enough to use as an only tool when MBR is implanted in new WWTP’s. Due to the complexity of the waste water empirical studies need to be performed under the actual conditions that prevail at Henriksdal WWTP.
2

Jämförelse av olika redox-titreringsmetoders valideringsparametrar / Comparison of different redox titration methods validation parameters

Segerlund Henriksson, Ella January 2024 (has links)
A fundamental analysis performed at LKAB is the determination of the iron (II) content of the company’s iron ore products. Currently, a redox titration method using potassium dichromate as the titrator is used to determine this content. However, LKAB is considering replacing its current method due to the titrator’s harmful effects on the health and the environment. The purpose of this study is to compare different redox titration methodsvalidation parameters, to find the most suitable method for the determination of the iron (II) content. The titrators in focus for this study is potassium dichromate, cerium (IV) sulphate and potassium permanganate. Several experiments were performed to compare the three titration methods. The validation parameters determined for each method were precision, accuracy, linearity, LOD, LOQ and robustness. The titration error was also calculated. The results showed that the redox titration with potassium dichromate as the titrator had the highest accuracy at 98.95 %, while the redox titration with cerium (IV) sulphate as the titrator had the best precision at 0.099 % (for samples with a similar matrix as LKAB’s iron ore products). Based on the acquired results, it was concluded that LKAB’s current method is the most suitable for the determination of the iron (II) content in LKAB’s iron ore products. The redox titration method using cerium (IV) sulphate as a titrator is a good competitor, butdue to the method’s slightly inferior accuracy and vague end point, it fails to outcompeteLKAB’s current method. / En grundläggande analys som utförs på LKAB är fastställandet av järn (II)-halten i företagets järnmalmsprodukter. För närvarande används en redox-titreringsmetod med kaliumdikromat som titrator för bestämmelsen av denna halt. LKAB överväger dock att byta ut sin nuvarande metod på grund av titratorns hälso- och miljöfarliga effekter. Syftet med denna studie är att jämföra olika redox-titreringsmetoders valideringsparametrar, för att hitta den mest lämpligaste metoden för fastställandet av järn (II)-halten. De titratorer som studeras är kaliumdikromat, cerium (IV) sulfat och kaliumpermanganat. Flertalet experiment utfördes, för att kunna jämföra de tre titreringsmetoderna med varandra. De valideringsparametrar som bestämdes för vardera metoden var precision, noggrannhet, linjäritet, LOD, LOQ och robusthet. Titrerfelet beräknades också. Resultaten visade att redox-titrering med kalimdikromat som titrator hade högst noggrannhet på 98,95 %, medan redox-titrering med cerium (IV) sulfat som titrator hade bäst precision på 0,099 % (för prover med liknande matris som LKAB:s järnmalmsprodukter). Utifrån de resultat som erhölls så drogs slutsatsen att LKAB:s nuvarande metod är den mest lämpligaste för fastställandet av järn (II)-halten i företagets järnmalmsprodukter. Redox-titreringsmetoden med cerium (IV) sulfat som titrator är en bra konkurrent, men på grund av metodens något sämre noggrannhet och otydligare slutpunkt så misslyckas den med att konkurrera ut LKAB:s nuvarande metod.

Page generated in 0.0433 seconds