• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 63
  • 47
  • 25
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 339
  • 170
  • 72
  • 61
  • 60
  • 52
  • 46
  • 45
  • 31
  • 30
  • 29
  • 27
  • 27
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Friedrich Heinrich Jacobi und die frühromantik

Bossert, Theodor Adolf, January 1926 (has links)
Inaug.-diss.--Giessen. / Lebenslauf. "Literatur-angabe": p. [40]. Includes bibliographical references.
2

Von der Eigenkirche zum volkseigenen Betrieb Erwin Jacobi (1884 - 1965) ; Arbeits-, Staats- und Kirchenrecht zwischen Kaiserreich und DDR

Otto, Martin January 2006 (has links)
Zugl.: Frankfurt (Main), Univ., Diss., 2006/2007
3

Das Secretarium practicae medicinae des Johannes Jacobi von Montpellier.

Bloedner, August, January 1926 (has links)
Leipzig, Med. Diss. v. 17. Dez. 1926 [1927].
4

Jacobis "Woldemar" im Spiegel der Kritik : eine rezeptionsästhetische Untersuchung /

Bechmann, Friedrich, January 1900 (has links)
Diss.--Philosophische Fakultät--Ludwig-Maximilians-Universität München, 1989.
5

Friedrich Heinrich Jacobis "Woldemar" in seinen verschiedenen Fassungen

David, Frida. January 1913 (has links)
Inaug-Diss.--Leipzig, 1913. / Lebenslauf.
6

Die Philosophie der Persönlichkeit nach Friedrich Heinrich Jacobi

Jacobi, Wilhelm Heinrich, January 1911 (has links)
Inaug.-Diss.--Erlangen. / Vita. Bibliography: p. 8-10, 72-74.
7

Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. / Local and global behavior for Hamilton-Jacobi equations with degenerate difusion

Attouchi, Amal 07 October 2014 (has links)
Cette thèse est consacrée à l’étude des propriétés qualitatives de solutions d’une équation d’évolution de type Hamilton-Jacobi avec une diffusion donnée par l’opérateur p-Laplacien. On s’attache principalement à l’étude de l’effet de la diffusion non-linéaire sur le phénomène d’explosion du gradient. Les principales questions qu’on étudie portent sur l’existence locale, régularité, profil spatial d’explosion et la localisation des points d’explosion. En particulier on montre un résultat d’explosion en seul point du bord. Dans le chapitre 4, on utilise une approche de solutions de viscosité pour prolonger la solution explosive au delà des singularités et on étudie son comportement en temps grands. Dans l’avant dernier chapitre on s’intéresse au caractère borné des solutions globales du problème unidimensionnel. Dans le dernier chapitre on démontre une estimation de gradient locale en espace et on l’utilise pour obtenir un résultat de type Liouville. On s’inspire et on compare nos résultats avec les résultats connus pour le cas de la diffusion linéaire. / This thesis is devoted to the study of qualitative properties of solutions of an evolution equation of Hamilton-Jacobi type with a p-Laplacian diffusion. It is mainly concerned with the study of the effect of the non-linear diffusion on the gradient blow-up phenomenon. The main issues we are studying are: local existence and uniqueness, regularity, spatial profile of gradient blow-up and localization of the singularities. We provide examples where the gradient blow-up set is reduced to a single point. In Chapter 4, a viscosity solution approachis used to extend the blowing-up solutions beyond the singularities and an ergodic problem is also analyzed in order to study their long time behavior. In the penultimate chapter, we address the question of boundedness of global solutions to the one-dimensional problem. In the last chapter we prove a local in space, gradient estimate and we use it to obtain a Liouville-type theorem.
8

Teorema de Branges

Pérez Armijo, Jhonny Edward January 2013 (has links)
Presentaremos la demostración del Teorema probado por Louis de Branges en (1984): “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces |a_n |n para todo n  1. Además si la igualdad se da para algún n  1, entonces f(z)=z/〖(1-αz)〗^2 , pertenece a C, con |α|=1 y todo z en D, donde D es el disco unitario en el plano complejo”. En un primer momento, presentaremos las conjeturas de Robertson y de Bieberbach una vez que la conjetura de Milin implica la de Robertson, que a su vez alude a de Bieberbach. Lo que Branges probo, en verdad fue la conjetura propuesta por Milin en (1967), que afirma: “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces ∑_(m=1)^n▒∑_(k=1)^m▒〖(k|γ_k |^2- 1/k) ≤0〗 donde γ_k son los coeficientes de expansión de series de potencias de la función (1/2) log⁡(z^(-1) f(z))" la cual implica la conjetura de Bieberbach.
9

Soluções de viscosidade estacionárias da equação de Hamilton-Jacobi

Almeida, Tadeu Zavistanovicz de January 2010 (has links)
Neste trabalho estudamos soluções de viscosidade estacionárias da Equação de Hamilton-Jacobi, suas propriedades, e indicamos sua conexão com o problema de Mather estacionário. Para tal, estabelecemos alguns conceitos como a acho estacionaria, funções estacionarias, Lagrangianos e Hamiltonianos estacionários, etc. No final deste trabalho utilizamos o Principio da Programação Dinâmica para provar a existência de solução de viscosidade estacionaria da Equação de Hamilton-Jacobi com desconto. / In this work we study stationary viscosity solutions of the Hamilton-Jacobi Equation, its properties, and we indicate its conexion with the Mather problem in the stationary setting. In order to do this, we establish some concepts like the stationary action, stationary functions, stationary Lagrangians and Hamiltonians, etc. In the ending of this work we use the Dynamic Programming Principle to establish the existence of stationary viscosity solution of the discounted Hamilton-Jacobi Equation.
10

Zeros of Jacobi polynomials and associated inequalities

Mancha, Nina 11 March 2015 (has links)
A Dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Master of Science. Johannesburg 2015. / This Dissertation focuses on the Jacobi polynomial. Specifically, it discusses certain aspects of the zeros of the Jacobi polynomial such as the interlacing property and quasiorthogonality. Also found in the Dissertation is a chapter on the inequalities of the zeros of the Jacobi polynomial, mainly those developed by Walter Gautschi.

Page generated in 0.0368 seconds