• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse non lisse : - Fonction d'appui de la Jacobienne généralisée de Clarke et de son enveloppe plénière - Quelques applications aux équations de Hamilton-Jacobi du premier ordre (fonctions de Hopf-Lax, Hamiltoniens diff. convexes, solutions sci)

Imbert, Cyril 19 May 2000 (has links) (PDF)
Le travail présenté dans ce mémoire est divisé en deux parties. La première partie est consacrée aux calculs des fonctions d'appui de la Jacobienne généralisée de Clarke et de son enveloppe plénière, associées à une fonction localement lipschtizienne à valeurs vectorielles. Clarke avait établi en 1975 que la fonction d'appui du sous-différentiel généralisé était une dérivée directionnelle généralisée. Il est donc satisfaisant de constater que la fonction d'appui de la Jacobienne généralisée est une sorte de "divergence directionnelle généralisée". Dans la seconde partie, nous présentons un certain nombre d'applications de techniques issues de l'Analyse non lisse à la résolution d'équations de Hamilton-Jacobi du premier ordre. Ainsi nous utilisons la dualité convexe et le calcul sous-différentiel pour prouver que les formules dites de Hopf-Lax définissent des solutions explicites des équations de Hamilton-Jacobi associées (avec données initiales semicontinues inférieurement). Nous n'utilisons ni le fameux principe de comparaison de la théorie des solutions de viscosité ni régularisation. Nous traitons successivement le cas de la dimension finie et de la dimension infinie. Ces résultats nous permettent de trouver des estimations des solutions d'équations dont l'hamiltonien est la différence de deux fonctions convexes. Enfin, nous nous attachons à l'étude des solutions sci dans des espaces de Banach dits ``lisses''. Le théorème de la valeur moyenne de Clarke et Ledyaev nous permet de montrer un résultat d'``enveloppe'' : nous construisons une solution sci pour une équation dont l'hamiltonien est le supremum d'une famille d'hamiltoniens. Nous appliquons enfin les mêmes techniques pour prouver l'existence d'une solution sci minimale sous des hypothèses plus faibles que celles que l'on recontre généralement dans la littérature.

Page generated in 0.1157 seconds