Spelling suggestions: "subject:"point coding anda control"" "subject:"point coding ando control""
1 |
Control over Low-Rate Noisy ChannelsBao, Lei January 2009 (has links)
Networked embedded control systems are present almost everywhere. A recent trendis to introduce radio communication in these systems to increase mobility and flex-ibility. Network nodes, such as the sensors, are often simple devices with limitedcomputing and transmission power and low storage capacity, so an important prob-lem concerns how to optimize the use of resources to provide sustained overall sys-tem performance. The approach to this problem taken in the thesis is to analyzeand design the communication and control application layers in an integrated man-ner. We focus in particular on cross-layer design techniques for closed-loop controlover non-ideal communication channels, motivated by future control systems withvery low-rate and highly quantized sensor communication over noisy links. Severalfundamental problems in the design of source–channel coding and optimal controlfor these systems are discussed.The thesis consists of three parts. The first and main part is devoted to the jointdesign of the coding and control for linear plants, whose state feedback is trans-mitted over a finite-rate noisy channel. The system performance is measured by afinite-horizon linear quadratic cost. We discuss equivalence and separation proper-ties of the system, and conclude that although certainty equivalence does not holdin general it can still be utilized, under certain conditions, to simplify the overalldesign by separating the estimation and the control problems. An iterative opti-mization algorithm for training the encoder–controller pairs, taking channel errorsinto account in the quantizer design, is proposed. Monte Carlo simulations demon-strate promising improvements in performance compared to traditional approaches.In the second part of the thesis, we study the rate allocation problem for statefeedback control of a linear plant over a noisy channel. Optimizing a time-varyingcommunication rate, subject to a maximum average-rate constraint, can be viewedas a method to overcome the limited bandwidth and energy resources and to achievebetter overall performance. The basic idea is to allow the sensor and the controllerto communicate with a higher data rate when it is required. One general obstacle ofoptimal rate allocation is that it often leads to a non-convex and non-linear problem.We deal with this challenge by using high-rate theory and Lagrange duality. It isshown that the proposed method gives a good performance compared to some otherrate allocation schemes.In the third part, encoder–controller design for Gaussian channels is addressed.Optimizing for the Gaussian channel increases the controller complexity substan-tially because the channel output alphabet is now infinite. We show that an efficientcontroller can be implemented using Hadamard techniques. Thereafter, we proposea practical controller that makes use of both soft and hard channel outputs. / QC 20100623
|
2 |
Source-channel coding for closed-loop controlBao, Lei January 2006 (has links)
<p>Networked embedded control systems are present almost everywhere. A recent trend is to introduce wireless sensor networks in these systems, to take advantage of the added mobility and flexibility offered by wireless solutions. In such networks, the sensor observations are typically quantized and transmitted over noisy links. Concerning the problem of closed-loop control over such non-ideal communication channels, relatively few works have appeared so far. This thesis contributes to this field, by studying some fundamentally important problems in the design of joint source--channel coding and optimal control.</p><p>The main part of the thesis is devoted to joint design of the coding and control for scalar linear plants, whose state feedbacks are transmitted over binary symmetric channels. The performance is measured by a finite-horizon linear quadratic cost function. The certainty equivalence property of the studied systems is utilized, since it simplifies the overall design by separating the estimation and the control problems. An iterative optimization algorithm for training the encoder--decoder pairs, taking channel errors into account in the quantizer design, is proposed. Monte Carlo simulations demonstrate promising improvements in performance compared to traditional approaches.</p><p>Event-triggered control strategies are a promising solution to the problem of efficient utilization of communication resources. The basic idea is to let each control loop communicate only when necessary. Event-triggered and quantized control are combined for plants affected by rarely occurring disturbances. Numerical experiments show that it is possible to achieve good control performance with limited control actuation and sensor communication.</p>
|
3 |
Source-channel coding for closed-loop controlBao, Lei January 2006 (has links)
Networked embedded control systems are present almost everywhere. A recent trend is to introduce wireless sensor networks in these systems, to take advantage of the added mobility and flexibility offered by wireless solutions. In such networks, the sensor observations are typically quantized and transmitted over noisy links. Concerning the problem of closed-loop control over such non-ideal communication channels, relatively few works have appeared so far. This thesis contributes to this field, by studying some fundamentally important problems in the design of joint source--channel coding and optimal control. The main part of the thesis is devoted to joint design of the coding and control for scalar linear plants, whose state feedbacks are transmitted over binary symmetric channels. The performance is measured by a finite-horizon linear quadratic cost function. The certainty equivalence property of the studied systems is utilized, since it simplifies the overall design by separating the estimation and the control problems. An iterative optimization algorithm for training the encoder--decoder pairs, taking channel errors into account in the quantizer design, is proposed. Monte Carlo simulations demonstrate promising improvements in performance compared to traditional approaches. Event-triggered control strategies are a promising solution to the problem of efficient utilization of communication resources. The basic idea is to let each control loop communicate only when necessary. Event-triggered and quantized control are combined for plants affected by rarely occurring disturbances. Numerical experiments show that it is possible to achieve good control performance with limited control actuation and sensor communication. / QC 20101109
|
Page generated in 0.1051 seconds