• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 3
  • 1
  • Tagged with
  • 26
  • 26
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient response to flexible rotor-bearing systems subjected to combined unbalance and ground excitations

Cheung, J. O. January 1988 (has links)
No description available.
2

A design criterion for maintaining contact at a revolute joint with clearance

Seneviratne, Lakmal D. January 1985 (has links)
No description available.
3

Long-term performance of pot hardware in continuous galvanizing lines

Parthasarathy, Venkatesh. January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains ix, 73 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 72-73).
4

An investigation of the steady-state performance of a pressurized air wave journal bearing

Kuznetov, Alexandru Marius. January 2010 (has links)
Thesis (M.S.)--University of Toledo, 2010. / Typescript. "Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science degree in Mechanical Engineering." "A thesis entitled"--at head of title. Title from title page of PDF document. Bibliography: p. 51-56.
5

Modelling of fluid flow in multiple axial groove water lubricated bearings using computational fluid dynamics

Tanamal, Tan Kong Hong Ryan January 2007 (has links)
Extensive research has been conducted in the area of journal bearings over many years for various operating conditions and geometry, effects of different types of lubricants (oil and water), different numbers (zero, one and three) and positions of grooves and the flow of lubricant between the shaft and bearing. One area of research has been developing methods to minimize the experimental time and cost of predicting the performance of journal bearings operating over a wide variety of conditions. This has led to numerical methods being developed and utilised for this purpose. Numerical methods are an important foundation for the development of Computational Fluid Dynamics (CFD). CFD method has proved to be a very useful tool in this research field. This project uses a CFD (specifically FLUENT) approach to simulate the fluid flow in a water lubricated journal bearing with equal spaced axial grooves. Water is fed into the bearing from one end. The lubricant is subjected to a velocity induced flow, as the shaft rotates and a pressure induced flow, as the water is pumped from one end of the bearing to the other. CFD software is used to simulate the fluid flow phenomenon that occurs during the process. Different parameters such as eccentricity ratio, number of grooves and groove orientation to the load line were examined. Lubricant pressure and velocity profiles were obtained and compared with available theoretical and experimental results. Two dimensional studies showed that the predicted maximum pressure and load carrying capacity from CFD were similar to the results from theoretical calculations. A small percentage difference (1.78% - 3.76%) between experimental and theoretical results was found. The pressure distribution in the lubricant shows that grooves decrease the pressure and load carrying capacity of the bearing. Swirl or turbulence does occur in the groove is affected by the viscosity of the lubricant. Three dimensional studies show that the pressure drops linearly from one end of the bearing to the other for no groove, concentric and three grooves cases. As the eccentricity increases, for one groove cases, the shape of the pressure profile changes to parabolic shape at positive region while the other pressure profiles drop linearly. The magnitude of the velocity it the bearing gap increased from 0.8 m/s to about 2.9 m/s when the shaft speed increased from zero to 5.5 m/s for a concentric and no groove case, similar changes were noted for all other cases. An interesting observation occurs when implementing the pressure profiles along the bearing. At cases such as zero and one groove condition and e = 0.4 and 0.6, lubricant flow back is observed at both inlet and outlet i.e. at certain area of the inlet, lubricant flowed out of the bearing against the supply pressure, a similar situation occurred at the exit of the bearing.
6

Effect of Axial Oscillation on Performance of Hydrodynamic Journal Bearings

Wirsing, Thomas 13 May 2008 (has links)
No description available.
7

VALIDATION OF FINITE ELEMENT PROGRAM FOR JOURNAL BEARINGS -- STATIC AND DYNAMIC PROPERTIES

Balupari, Raja Shekar 01 January 2004 (has links)
The analysis of bearing systems involves the prediction of their static and dynamic characteristics. The capability to compute the dynamic characteristics for hydrodynamic bearings has been added to Bearing Design System (BRGDS), a finite element program developed by Dr. R.W. Stephenson, and the results obtained were validated. In this software, a standard finite element implementation of the Reynolds equation is used to model the land region of the bearing with pressure degrees of freedom. The assumptions of incompressible flow, constant viscosity, and no fluid inertia terms are made. The pressure solution is integrated to give the bearing load, and the stiffness and damping characteristics were calculated by a perturbation method. The static and dynamic characteristics of 60, 120 and 180 partial bearings were verified and compared for a length to diameter (L/D) ratio of 0.5. A comparison has also been obtained for the 120 bearing with L/D ratios of 0.5, 0.75 and 1.0. A 360-journal bearing was verified for an L/D ratio of 0.5 and also compared to an L/D ratio of 1.0. The results are in good agreement with other verified results. The effect of providing lubricant to the recesses has been shown for a 120 hybrid hydrostatic bearing with a single and double recess.
8

Laboratorní metody testování kluzných ložisek spalovacích motorů / Laboratory testing methods for plain bearings for combustion engines

Loveček, Libor January 2018 (has links)
The aim of this work is to set similar tribological conditions at different levels of testing and to determine the resultant parameters, which can be compared with a special testing device for testing of journal bearings.
9

Konstrukce zařízení pro testování kluzných ložisek spalovacích motorů / Design of an experimental rig for testing of internal-combustion engine journal bearings

Bedeč, Csaba January 2015 (has links)
This thesis deals with the structural design of a test rig for combustion engine bearings with static and dynamic loading capabilities. The first part of thesis summarizes materials, geometries and possible bearing failures, then analyzes existing test rigs. The second part contains different solutions and summarizes these solutions to a final design. The last part contains analysis of possible failure of the test rig and solutions for these problems. The thesis contains drawings prepared for manufacturing and a design report.
10

Rupture Point Movement in Journal Bearings

Bara, Richard J. 07 June 2004 (has links)
"Two most important events in the history of lubrication theory are attributed to Reynolds and Sommerfeld. Reynolds derived the governing equations for lubricating films in simplifying the Navier-Stokes equations considering thin-film effects. Sommerfeld obtained a closed form analytical solution to the Reynolds equation for the long bearing (one-dimensional case) with fixed constant eccentricity which results in a point symmetric pressure profile compared to an arbitrary (ambient) level. In attempting to reconcile with experimental evidence, Gumbel advanced the argument that sub-ambient pressure in a fluid film is not possible. On the basis that the fluid film would rupture, he put forth that the sub-ambient portion of the Sommerfeld solution should be discarded, a proposition that is commonly recognized as the half-Sommerfeld solution (of Gumbel). Ever since Gumbel suggested this improvement, much interest remains regarding the physical process of rupture in bearing lubricating films. In lubrication literature, cavitation is used interchangeably with rupture to indicate a condition in which an abundance of a gas phase, essentially ambient air, is present in a portion of the bearing clearance. A cogent two-phase morphology for addressing cavitation in long bearings is postulated in order to predict time-dependent fluid behavior from an initial state that is a generalization of Gumbel’s half-Sommerfeld solution. The ultimate steady-state is presumed to satisfy the hypothesis of Swift and Stieber that an ambient condition is reached by the rupture point at an unspecified location simultaneously with a vanishing pressure gradient. A trans-rupture continuity equation, as proposed by Olsson, determines a formula for the speed of a moving rupture point requiring a specific model of the two-phase flow in the rupture region. Employing an adhered film model, sequential application of Olsson’s equation to the rupture points of the intermediate states between the half-Sommerfeld and Swift-Stieber states renders an interpretation of a time-dependent progression towards a steady-state solution. Closed form analytical formulas, which readily combine to provide an exact solution to the Reynolds equation are derived with the start (formation point) of the full-film other than the customary bearing maximum gap and with the rupture point at any assigned intermediate location. Each valid solution for an intermediate state yields an invariant flux that must satisfy a window of constraints to exclude the possibility of sub-ambient pressures. A complete set of such valid solutions exists for each fixed eccentricity and can be depicted as a contour plot of the invariant flux with formation and rupture points as coordinates. The method can readily be extended to two-dimensions, offering a promising alternative to the Elrod cavitation algorithm, which is commonly used in more comprehensive bearing analyses."

Page generated in 0.1031 seconds