• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kinematic Control of Redundant Knuckle Booms with Automatic Path Following Functions

Löfgren, Björn January 2009 (has links)
To stay competitive internationally, the Swedish forestry sector must increase its productivity by 2 to 3% annually. There are a variety of ways in which productivity can be increased. One option is to develop remote-controlled or unmanned machines, thus reducing the need for operator intervention. Another option—and one that could be achieved sooner than full automation—would be to make some functions semi-automatic. Semi-automatic operation of the knuckle boom and felling head in particular would create “mini-breaks” for the operators, thereby reducing mental and physiological stress. It would also reduce training time and increase the productivity of a large proportion of operators. The objective of this thesis work has been to develop and evaluate algorithms for simplified boom control on forest machines. Algorithms for so called boom tip control, as well as automatic boom functions have been introduced. The algorithms solve the inverse kinematics of kinematically redundant knuckle booms while maximizing lifting capacity. The boom tip control was evaluated – first by means of a kinematic simulation and then in a dynamic forest machine simulator. The results show that boom tip control is an easier system to learn in comparison to conventional control, leading to savings in production due to shorter learning times and operators being able to reach full production sooner. Boom tip control also creates less mental strain than conventional control, which in the long run will reduce mental stress on operators of forest machines. The maximum lifting capacity algorithm was then developed further to enable TCP path-tracking, which was also implemented and evaluated in the simulator. An evaluation of the fidelity of the dynamic forest machine simulator was performed to ensure validity of the results achieved with the simplified boom control. The results from the study show that there is good fidelity between the forest machine simulator and a real forest machine, and that the results from simulations are reliable. It is also concluded that the simulator was a useful research tool for the studies performed in the context of this thesis work. The thesis had two overall objectives. The first was to provide the industry and forestry sector with usable and verified ideas and results in the area of automation. This has been accomplished with the implementation of a simplified boom control and semi-automation on a forwarder in a recently started joint venture between a hydraulic manufacturer, a forest machine manufacturer and a forest enterprise. The second objective was to strengthen the research and development links between the forestry sector and technical university research. This has been accomplished through the thesis work itself and by a number of courses, projects and Masters theses over the last three years. About 150 students in total have been studying forest machine technology in one way or the other. / QC 20100729
2

Mitigating VR Cybersickness Caused by Continuous Joystick Movement

Aditya Ajay Oka (16529664) 13 July 2023 (has links)
<p>When users begin to experience virtual reality (VR) for the first time, they can be met with some degree of motion sickness and nausea, especially if continuous joystick locomotion is used. The symptoms that are induced during these VR experiences fall under the umbrella term cybersickness, and due to these uncomfortable experiences, these users can get a bad first impression and abandon the innovative technology, not able to fully appreciate the convenience and fascinating adventures VR has to offer. As such, this project compares the effects of two cybersickness mitigation methods (Dynamic Field of View (FOV) and Virtual Reference Frame), both against each other and combined, on user-reported cybersickness symptoms to determine the best combination to implement in commercial applications to help create more user-friendly VR experiences. The hypothesis is that combining the FOV reduction and the resting frame methods can mitigate VR cybersickness more effectively without hindering the user’s experience and the virtual nose method is more potent at mitigating cybersickness compared to dynamic FOV. To test these hypotheses, an experimental game was developed for the Meta Quest 2 with five levels: a tutorial level and four maze levels (one for each scenario). The participants were asked to complete the tutorial level until they got used to the virtual reality controls, and then they were instructed to complete the maze level twice with one of the following conditions for each run: no method, dynamic field of view only, virtual nose only, and dynamic field of view and virtual nose combined. After completing each maze trial, the participants were asked to complete a simulator sickness questionnaire to get their thoughts on how much sickness they felt during the test. Upon concluding the testing phase with 36 participants and compiling the data, the results showed that while the subjects preferred the dynamic FOV method even though they were able to complete the trials significantly faster with the virtual nose method, it is inconclusive regarding which method is truly more effective. Furthermore, the results showed that it is also inconclusive if the scenario with both methods enabled is significantly better or worse than either method used separately.</p>

Page generated in 0.0769 seconds