51 |
Untersuchungen zur Charakterisierung der Bystander-Effekte bei einer In-vivo-Therapie mit SuizidgenenCorban-Wilhelm, Heike. January 2001 (has links) (PDF)
Mainz, Univ., Diss., 2001.
|
52 |
Evaluation of neuromuscular transmission in organophosphorus pesticide toxicityDissanayake, Kosala Nimanthi January 2015 (has links)
Organophosphorus (OP) pesticide toxicity is a global health problem. Respiratory failure due to neuromuscular transmission dysfunction accounts for about 300,000 deaths annually in rural Asia. However, the clinical manifestation is complex, and described in terms of acute, intermediate, and chronic syndromes. The underlying mechanism of toxicity is still unclear. OP pesticides contain inhibitors of acetylcholinesterase (AChE), for example dimethoate, emulsified in an organic solvent, typically cyclohexanone. A hypothesized mechanism is initial excitotoxicity through inhibition of acetylcholinesterase followed by failure of neuromuscular synaptic transmission. I tested this electrophysiologically in vitro by measuring properties of spontaneous miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) in isolated sciatic nerve/flexor digitorum brevis muscles from mice, bathed in HEPES-buffered mammalian physiological saline (MPS). Muscle action potentials were abolished with μ-conotoxin (2μM). First, we tested the effects of plasma taken from Göttingen minipigs instilled orally (isofluorane anaesthesia) with a formulated pesticide (2.5ml/kg) whose active ingredient is dimethoate dissolved in cyclohexanone. This plasma abolished evoked synaptic transmission and increased spontaneous MEPP frequency within 60-180 minutes of bath application. However plasma from minipigs instilled with dimethoate alone produced no failure of transmission. Plasma contained either pesticide or dimethoate significantly increased the half decay time of EPPs. However, pesticide-plasma also contained the metabolites omethoate (100μM) and cyclohexanol (5 mM). We found that bath application of omethoate alone caused a potent dose-dependent increase in EPP decay time. Cyclohexanol (5 mM) also increased EPP decay time but it also decreased both the excitability of axons and MEPP amplitude. In combination, omethoate and cyclohexanol produced greater disruption of neuromuscular transmission than either dimethoate or cyclohexanone, alone or in combination and this was particularly evident in isometric tension recordings, in which prolonged after-contraction and slow relaxation were observed during and immediately following tetanic stiumuation in the presence of omethoate and cyclohexanol. Voltage-clamp recordings of endplate currents (EPC) partially supported the EPP observations. Surprisingly, cyclohexanol-treated preparations showed no significant increase in EPC and MEPC decay time. However, there was some evidence of activity-dependent decline in MEPC amplitude in cyclohexanol while quantal content in these preparations showed evidence of an increase suggesting a homeostatic response in evoked transmitter release with cyclohexanol treatment. Analysis of presynaptic currents in cyclohexanol treated preparations also revealed preliminary evidence of sensitivity to cyclohexanol compared to control preparations. Finally, I tested the effects NMJ transmission of 24hr exposure to OP pesticide and its metabolites using a novel organ culture system, utilising a mouse mutant (WldS) with a slow nerve degeneration phenotype. After incubation of 24 hrs with MPS + pesticides and metabolites, these muscles showed significant reduction in function (response to nerve stimuli with EPP/action potential ± MEPPs) compared to control cultures. Together, the data indicate that failure of neuromuscular transmission by pesticide-plasma cannot be explained solely by dimethoate-mediated inhibition of acetylcholinesterase. Rather, a combination of metabolic breakdown products exerts potent, harmful presynaptic and postsynaptic effects. Either blocking the metabolic conversion of the constituents of OP pesticides, or transiently blocking their effects on receptors may therefore be an effective strategy for treatment of OP pesticide toxicity.
|
53 |
Die Veränderungen der Tight Junction-Proteine der Blut-Rückenmarkschranke in einem neuropathischen Schmerzmodell bei Ratten / Tight junction proteins in the blood-spinal cord barrier in neuropathic painKirchner, Juliane January 2021 (has links) (PDF)
Neuropathische Schmerzen treten in der klinischen Praxis häufig auf und
beeinträchtigen in hohem Maße die Lebensqualität der Patienten. Bedingt durch eine
Schädigung somatosensorischer Nervenstrukturen im peripheren oder zentralen
Nervensystem ist der Schmerz meist durch eine Allodynie, Hyperalgesie oder
einschießende Schmerzen charakterisiert. Diese Symptome lassen sich durch
gängige Schmerzmittel kaum lindern. In jüngerer Zeit rückte die Blut-Rückenmarkschranke immer mehr in den Fokus verschiedener Untersuchungen, da auch
einige nicht-schmerzhafte Erkrankungen (z.B. Multiple Sklerose und Amyotrophe
Lateralsklerose) zur Veränderung dieser Barriere mit folgender Permeabilitätserhöhung
durch reduzierte Tight Junction-Protein-Expression führen. Die Blut-
Rückenmarkschranke dichtet Gefäße des Rückenmarks ab und verhindert das
Eindringen toxischer oder proanalgetischer Mediatoren in das zentrale Nervensystem.
Dafür ist die Funktion der Tight Junction-Proteine zur Aufrechterhaltung dieser Barriere
essentiell. Dennoch konnte die Rolle der Blut-Rückenmarkschranke bei Neuropathie
noch nicht vollständig erörtert werden. Die Untersuchungen meiner Arbeitsgruppe
konnten bereits zeigen, dass eine lockere Ligatur des N. ischiadicus bei Ratten (CCI;
chronic constriction injury) zur Entwicklung einer thermischen und mechanischen
Hyperalgesie sowie eingeschränkten motorischen Funktionen führt. Zudem konnte
eine Störung der Blut-Rückenmarkschranke nach einer CCI nachgewiesen werden, da
es Tracern unterschiedlicher molekularer Größe möglich war das Rückenmark zu
penetrieren. Daher sollte im Rahmen dieser Dissertation untersucht werden, inwieweit
es zu einer Veränderung unterschiedlicher Tight Junction-Proteine nach peripherer
Nervenverletzung (CCI) kommt. Hierbei konnte gezeigt werden, dass eine CCI zu einer
Herabregulation der mRNA-Expression von Claudin-1, Claudin-19, Tricellulin und
Occludin im Rückenmark führt, wobei diese Veränderungen insbesondere 7 und 14 d
nach der CCI auftraten. Die membranäre Expression dieser Proteine im Rückenmark
blieb bis auf Occludin unverändert, das 7 d nach der CCI signifikant reduziert war. Am
deutlichsten waren jedoch Claudin-5 und ZO-1 verändert. Folglich vermindert eine CCI
signifikant die Claudin-5-mRNA sowie die Immunreaktivität in isolierten Kapillaren des
Rückenmarks. Das Ankerprotein ZO-1 war sogar auf allen Ebenen, also in der Genals
auch Proteinexpression, und darüber hinaus in den Rückenmarkskapillaren
signifikant reduziert.
Die Interpretation dieser Ergebnisse legt nahe, dass ZO-1, und zum Teil auch
Claudin-5, für die gestörte Blut-Rückenmarkschranke verantwortlich sind und die
anderen untersuchten Proteine vermutlich nur eine untergeordnete Rolle spielen. Die
Bedeutung der Tight Junction-Proteine in der Blut-Rückenmarkschranke konnte somit
weiter untermauert werden. In zukünftigen Untersuchungen wäre es wichtig den
Signalweg, der zur Veränderung der Tight Junction-Proteine führt sowie die
subzelluläre Lokalisation zu untersuchen, um Möglichkeiten zum Wiederverschluss
der Barriere zu finden. Somit könnten Therapien zur Aufrechterhaltung der Blut-
Rückenmarkhomöostase den neuropathischen Schmerz unter Umständen kausal, und
nicht nur symptomatisch, behandelbar machen. / Chronic neuropathic pain is common in clinical practice and it greatly impairs the
quality of life of patients. Due to a lesion or disease of the peripheral or central nervous system neuropathic pain is characterized by allodynia, hyperalgesia and spontaneous
pain. The treatment of neuropathic pain remains a challenge since conventional pain
treatment is not effective in alleviating most types of neuropathic pain. Lately a lot of
research has focussed on the function of the blood-spinal cord barrier (BSCB) since
some non-painful diseases (e.g. multiple sclerosis and amyotrophic lateral sclerosis)
compromise the barrier and lead to reduced tight junction protein expression. The
BSCB prevents leakage of molecules such as pronociceptive and toxic mediators into
the spinal cord. Tight junction proteins are essential in maintaining this barrier by
restricting the paracellular diffusion pathway. Nevertheless, the pathophysiology of
neuropathic pain is not completely understood. Recently, this scientific work group
observed that rats with a loose ligation of the sciatic nerve (CCI) developed thermal
and mechanical hypersensitivity and reduced motor performance. The BSCB became
permeable for small and large tracers indicating a breakdown of the barrier. This study
was therefore designed to explore selected tight junction proteins after nerve injury
using CCI. The mRNA expression of claudin-1, claudin-19, tricellulin and occludin was
significantly reduced at 7 and 14 days after CCI. No alteration in protein expression
was observed at any chosen time point except for occludin which was significantly
decreased 7 days after CCI. In addition, CCI leads to a reduction of tight junction
proteins most pronounced for claudin-5 an ZO-1. Claudin-5 mRNA expression and
immunoreactivity in spinal cord capillaries is significantly reduced after CCI. The
anchor protein ZO-1 is even downregulated at mRNA and protein levels in the whole
lumbar spinal cord as well as in the spinal cord capillaries. In conclusion, this research
shows that ZO-1 and in part claudin-5 are necessary for maintaining the BSCB while
other tight junction proteins possibly play a minor role for the tightness of the barrier.
These results further emphasize the importance of tight junction proteins in the BSCB.
In future research the signaling pathway and regulation of these tight junction proteins
should be explored as barrier sealing could be a possibility for pain relief in the future.
|
54 |
Newly characterized dystrophin-associated proteins (DAPs) identified in skeletal muscle using monoclonal antibodiesButterworth, Joanne. January 2002 (has links)
No description available.
|
55 |
COMPARATIVE STUDY ON DROSOPHILA LARVAL LOCOMOTION AND NEUROMUSCULAR JUNCTION MORPHOLOGYYang, Emma Yunyi 19 August 2013 (has links)
No description available.
|
56 |
THE ROLE OF CONNEXIN-43-MEDIATED GAP JUNCTION INTERCELLULAR COMMUNICATION IN BLOOD FORMATIONKASTL, BRYAN DARYL 13 July 2006 (has links)
No description available.
|
57 |
Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme / Cleavage Versatility of 8-17 DeoxyribozymeCruz, Rani Priya Gomez 12 1900 (has links)
We conducted 16 parallel in vitro selection experiments to isolate catalytic DNAs from a common DNA library for the cleavage of all 16 possible dinucleotide junctions of RNA incorporated into a common DNA/RNA chimeric substrate sequence. We discovered hundreds of sequence variations of the 8-17 deoxyribozyme - an RNA-cleaving catalytic DNA motif previously reported - from nearly all 16 final pools. Sequence analyses identified four absolutely conserved nucleotides in 8-17. Five representative 8-17 variants were tested for substrate cleavage in trans and together they were able to cleave 14 dinucleotide junctions. New 8-17 variants required Mn2+ to support their broad dinucleotide cleavage capabilities. We hypothesize that 8-17 has a tertiary structure composed of an enzymatic core executing catalysis and a structural facilitator providing structural fine-tuning when different dinucleotide junctions are given as cleavage sites. / Thesis / Master of Science (MSc)
|
58 |
An early history of Junction City, Kansas: the first generationJeffries, John B. January 1963 (has links)
Call number: LD2668 .T4 1963 J44 / Master of Science
|
59 |
Thermocouple Measurements without Custom ElectronicsWanis, Paul 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Thermocouple measurements require “cold junction” compensation in order to obtain a correct reading. This compensation has traditionally been done with custom circuitry. In flight test applications where volume and power are at a premium (e.g. weapons flight test) it is desirable to have a more flexible solution that uses standard analog data acquisition channels already available as part of the encoder circuitry and performs compensation with remote software. This can be done via digital compensation, but certain measures must be taken to maintain accuracy and minimize noise. This paper describes some of these techniques and their performance tradeoffs.
|
60 |
A millimeter unilateral finline SIS mixer with a wide IF bandwidthZhou, Yangjun January 2013 (has links)
Superconductor-Insulator-Superconductor (SIS) tunnel junction mixers are now commonly used in astronomical receivers at (sub)millimeter wavelengths because of their superb sensitivity, high dynamic range and stability of operation. Niobium SIS mixers operating at frequencies well below the super- conducting gap (∼680 GHz) have already achieved quantum limited sensitivity. Therefore to further enhance the receiver sensitivity, increasing the Intermediate Frequency (IF) bandwidth of SIS mixers has became crucial. This thesis focuses on the theoretical modeling, design and experimental verifi- cation of Nb SIS mixers operating around 230 GHz with a wide IF bandwidth of 1–15 GHz. These mixers were designed for a single baseline heterodyne interferometer (GUBBINS), which is being built to observe the Sunyaev-Zel’dovich effect in the Cosmic Microwave Background. The combination of wide IF bandwidth SIS mixers and complex analogue correlators will allow GUBBINS to feature high surface brightness sensitivity, that helps to distinguish the weak SZ effect from the background noise. The SIS mixer detector system was assembled inside the GUBBINS cryostat together with the IF electronics and RF/LO optical systems. Low noise temperatures of around 71 K were then measured in the GUBBINS system. The Nb SIS mixer we have developed uses a unilateral finline and fully integrated planar circuits deposited on a silicon substrate, to couple the electromagnetic radiation from the waveguide into the SIS junction. The finline mixer allows a broad-band RF coupling, an easy integration of the on-chip planar circuits and an easy-to-fabricate mixer block. To achieve a wide IF bandwidth, the output impedance of the SIS mixer was well matched to the input impedance of the amplifier by a multi-stage microstrip circuit. Additionally, the planar circuit of the SIS mixer was also designed to have a small lumped inductance and capacitance. The SIS mixer chip was extensively simulated by rigorous electromagnetic software (HFSS) and the S-parameter was exported to a quantum mixing package SuperMix to produce a full-wave model of the mixer. Experimental testing yielded a best noise temperature of 50 K with an average noise temperature of 75 K over an RF bandwidth of 160 GHz– 260 GHz. We have performed thorough experimental and computational investigation of the IF system in particular the constraints on the bandwidth caused by the lumped element capacitance of the mixer chip and the matching of the output impedance of the mixer to the IF amplifier. Our conclusion is that a bandwidth of 1–15 GHz could be achieved using our mixer design, subject to the performance of the amplifier. Finally, a variable temperature load system was successfully developed and tested inside the cryostat, to avoid the losses from the room-temperature optics. We have showed that the noise temperature of the SIS detector could be reduced by as much as 15 K by testing the mixer using a variable temperature load inside the cryostat.
|
Page generated in 0.0901 seconds