• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bewertung von oberflächennahen Grundwasseranreicherungen über Aquifer Storage and Recovery unter Berücksichtigung der Aquiferheterogenität und alternativer Infiltrationsmethoden / Assessment of shallow artificial recharge using Aquifer Storage and Recovery considering aquifer heterogeneity and alternative infiltration methods

Händel, Falk 03 November 2014 (has links) (PDF)
Die vorliegende Arbeit umfasst im ersten Teil eine Literaturrecherche zu Aquifer Storage and Recovery (ASR) im Allgemeinen und den Einfluss physikalisch-chemischer Prozesse auf ASR. Aus dieser konnte abgeleitet werden, dass durch standortbedingte Untergrundeigenschaften stark unterschiedliche physikalische und chemische Prozesse ablaufen und eine eindeutige Vorhersage zum Verhalten und zur Effizienz von ASR an einem neuen oder bereits genutzten Standort ohne spezifische Informationen nicht möglich ist. Des Weiteren wurde eine Literaturstudie zum Einfluss der transversalen Dispersivität, als Maß für die Vermischung von transportierten Stoffen quer zu einer (natürlichen) Fließrichtung, auf den (reaktiven) Transport durchgeführt. Letztlich wurde im Rahmen einer betreuten Masterarbeit (M. Sc. Chang Liu) eine Bewertung aus der Literatur entnommener transversaler Dispersivitäten durchgeführt. In den weiteren Teilen der Arbeit wurden Fallstudien mit unterschiedlichen Fragestellungen für die Planung und den Betrieb von künstlichen Grundwasseranreicherungen und speziell ASR numerisch modelliert und bewertet. Zuerst wurden numerische Simulationen zum konservativen Transport am Testfeld „Lauswiesen“, Tübingen, Baden-Württemberg durchgeführt. Diese beinhalteten über Direct-Push(DP)-Erkundungsmethoden gewonnene Informationen zur Untergrundstruktur. Die Ergebnisse zeigen, dass zur Vorhersage des standortspezifischen Transports in den „Lauswiesen“ und für vergleichbare hydraulische Situationen, auch in Hinsicht auf ASR, deterministische hydrogeologische Einheiten und ihre situationsgerechte Berücksichtigung in numerischen Modellen höchst relevant sind. Aufbauend auf den genannten Ergebnissen wurde eine Masterarbeit durch Herrn M. Sc. Tsegaye Abera Sereche durchgeführt. Diese Masterarbeit zeigte für diesen Fall erneut die hohe Relevanz deterministischer Strukturen gegenüber kleinskaligen, dreidimensionalen Heterogenitäten für ASR. Weiterführende numerische Simulationen zu einem möglichen ASR-Feldtest am Standort „Lauswiesen“ ergaben, dass dieser unter den gegebenen Untergrundbedingungen nur bei Abweichungen von einem vertretbaren Konzept für einen Ein-Brunnen-Test, z. B. bei sehr großen Infiltrationsmengen, oder durch Umwandlung in einen Zwei-Brunnen-Test durchführbar ist. Während dieser Arbeit wurden gemeinsame Forschungsarbeiten mit dem Kansas Geological Survey, Kansas, USA durchgeführt, welche die Bewertung der Verwendbarkeit von DP-Brunnen als alternative Infiltrationsmethode zu Oberflächenmethoden beinhalteten. Als Teil der gemeinsamen Arbeiten wurde im Rahmen der vorliegenden Arbeit eine synthetisierte, numerische Bewertung der neuen DP-Infiltrationsbrunnen sowie einen Vergleich mit einer herkömmlichen Oberflächeninfiltrationsmethode übernommen. Im Einklang mit der Zielstellung der Arbeit wurde ebenfalls eine numerische Bewertung natürlicher und anthropogener Heterogenitäten auf die Infiltration durchgeführt. Aus den Ergebnissen konnten für die neue Infiltrationsmethode signifikante Vorteile abgeleitet werden. Weitere numerische Modellierungen wurden durchgeführt, um die wesentlichen Ergebnisse auf einen Feldstandort in der Südlichen Steiermark, Österreich, anzuwenden, welcher: a) bereits ein horizontales Versickerungssystem besitzt, b) weitere Systeme erhalten soll und c) letztlich eine besondere Herausforderung für vertikale Versickerungssysteme darstellt. Die Modellierung des vorhandenen Systems zeigt die hohe Komplexität der Infiltrationsprozesse. Jedoch konnten hydraulische Parameter bestätigt und in weitere planerische Simulationen zu Verwendung von DP-basierten Infiltrationsbrunnen eingefügt werden. Diese zeigen, dass ein Brunnenfeld am Standort auf relativ geringem Raum installiert werden kann. Zusätzlich zeigt ein Feldversuch an einem weiteren Standort (Pirna, Sachsen), dass hohe Infiltrationsraten unter Nutzung von DP-Brunnen möglich sind. / The works presented in the thesis include in the first part a literature research on Aquifer Storage and Recovery (ASR) in general and the impacts of different physico-chemical processes on ASR. This research concludes that site-specific subsurface conditions lead to varying physical and chemical processes and that a conclusive prediction of function and efficiency of ASR at any site, in-operation or new site design, is not possible without site-specific information. Additionally, a literature study was conducted that focused on the impacts of transverse dispersivity, as a measure for mixing of transported species perpendicular to the (natural) flow direction, on (reactive) transport. Finally, evaluation of transverse dispersivity data available in the literature was performed, which included a supervision of a master thesis (of M. Sc. Chang Liu). Numerical simulations of case studies for different questions of planning and operation of artificial recharge systems and more specifically ASR were realized for the other parts of the thesis. The first evaluated case was the “Lauswiesen” test site, Tübingen, Baden-Wuerttemberg. This study used new insights into the subsurface structure gained by Direct-Push(DP) exploration methods. The results obtained show that for further works at the site and for comparable hydraulic conditions, also in the view of ASR, deterministic hydrogeological subunits and their consideration in numerical models are critical for prediction of site-specific transport. Based on the previous findings, a master thesis was conducted by M. Sc. Tsegaye Abera Sereche. The master thesis yet again revealed for this case the high relevance of deterministic subunits compared to small-scale, three-dimensional heterogeneities for ASR. Further, numerical simulations of a possible ASR field test at “Lauswiesen” site showed that under the prevailing subsurface conditions, a field test can only be realized when the set-up of a single-well-test is impracticably changed, by e.g. very high infiltration volumes, or by transformation into a two-well-test. During the thesis joint research works were performed with the Kansas Geological Survey, Kansas, USA, which contained the evaluation of the applicability of DP wells as an alternative to surface infiltration methods. As part of the joint work, this thesis presents a synthesized numerical evaluation of the new DP well infiltration as well as a comparison to a common surface infiltration system. Furthermore, in accordance with the main objective of the work, numerical evaluation of natural and anthropogenic heterogeneities was performed. The results concluded the advantages for the DP wells for infiltration process. Further numerical models were implemented to convey the important results to a field site at Southern Styria, Austria, where: a) an existing infiltration system is already in operation, b) further infiltration systems are planned and c) the subsurface conditions are rather challenging for vertical infiltration systems. Modeling of the existent system revealed the high complexity of the infiltration processes. However, hydraulic parameters could be verified and included into planning simulations for DP-based infiltration wells. The findings show, that a well field can be installed at a comparably small land. Additionally, a field test at a further test site (Pirna, Sachsen) indicates that high infiltrations rates are possible when DP wells are used.
2

New advances in the assessment of managed aquifer recharge through modelling

Glaß, Jana 11 November 2019 (has links)
Managed aquifer recharge (MAR) is widely applied for sustainable groundwater management. Despite its apparent simplicity, the evaluation of MAR schemes can be challenging especially with regard to feasibility assessment, planning but also operation. The absence of proper evaluation methods hinders the optimal operational management, reduces the level of public trust and raises questions about the impact of MAR on the affected ecosystem. The development of appropriate tools could help water utilities to maximize the use of groundwater while satisfying physical, financial, and sustainability constraints. As overall objective, the application of new and advanced tools can increase the understanding of the underlying processes and in that way increase the confidence in MAR and foster the successful implementation of MAR schemes. The thesis consists of three main parts which objectives are to: 1) understand the role of modelling in MAR and identify information gaps by a review of available modelling studies; 2) increase the availability of efficient database and analytical tools including their development and web-based implementation; and 3) improve and contribute to new advances in numerical modelling of MAR. A survey of conducted modelling studies, mainly based on numerical methods, revealed that groundwater flow models are most frequently applied to assess MAR schemes. Modelling objectives comprise the planning and optimization of the design and operation of a MAR facility as well as its impact on the groundwater system. Simulations help to assess the achievable recovery efficiency and occurring geochemical processes to minimize the risk of failure of a planned facility, also with regard to long-term impacts. Furthermore, site-selection and the influence of MAR on seawater intrusion are frequently analysed by modelling. The literature review served as a basis for the MAR model selection tool which enables, dependent on objectives, methods and model types, to extract suitable models and case studies. Based on analytical equations to determine groundwater mounding, saltwater intrusion or the pumping-induced river drawdown, further tools were developed and compiled on a web-based platform for easy access and utilization. The web-based applications can be used as screening tools to assess MAR-related issues. For a more detailed analysis, numerical models represent useful instruments to analyse MAR schemes on various scales. On regional scale, the feasibility of MAR implementation at proposed locations is often a challenging question due to the lack of detailed knowledge of the local groundwater system and its response to MAR. Consequently, an approach combining numerical groundwater flow modelling and GIS-based multi-criteria decision-analysis (MCDA) was formulated and subsequently tested for the city centre of Hanoi, Vietnam. The results indicate that MAR could help to reduce the local overexploitation of groundwater and stop land subsidence. For existing MAR schemes on local scale, the residence time in the subsurface is a critical parameter determining e.g. the removal of pathogens. As the influence of viscosity on the seasonal residence time is not fully clear, a numerical groundwater flow and heat transport model was set up for a MAR scheme in Berlin, Germany to evaluate the seasonal impact of viscosity. The results suggest that the consideration of viscosity in the numerical modelling scheme has an influence on the subsurface travel time and results in shorter residence times. At point scale, clogging represents a critical issue with regard to the long-term viability of a MAR scheme which is frequently neglected in numerical models. The numerical unsaturated flow model HYDRUS-1D/2D was enhanced to enable the simulation of time-variable hydraulic conductivities as an approximation of clogging. With the help of the time-variable scaling factor in combination with the reservoir boundary condition, the increasing water head in the laboratory aquifer well and infiltration basin due to clogging was reproduced. The presented tools and numerical modelling approaches are useful to assess a wide range of MAR-specific issues, to manage the risks associated with implementation and operation and improve the overall performance and reliability of MAR schemes. Through the application of suitable data-based, analytical and numerical tools, the thesis contributes to the perception of MAR as a suitable and reliable technique for water resource management.:1 INTRODUCTION 1 2 ASSESSMENT OF MANAGED AQUIFER RECHARGE THROUGH MODELLING 11 3 WEB-BASED EMPIRICAL AND ANALYTICAL TOOLS FOR INITIAL MAR-RELATED ASSESSMENT 29 4 MANAGED AQUIFER RECHARGE FEASIBILITY ASSESSMENT USING GIS-BASED SUITABILITY MAPPING AND NUMERICAL MODELLING 53 5 INFLUENCE OF VISCOSITY ON THE SEASONAL RESIDENCE TIME DURING MAR OPERATION 73 6 SIMULATION OF HYDRAULIC CONDUCTIVITY CHANGES OVER TIME DURING MAR OPERATION 91 7 SCIENTIFIC IMPLICATIONS AND RESEARCH PERSPECTIVES...113 Bibliography 117 A Appendix 143 / Grundwasseranreicherung (engl. Managed Aquifer Reharge, MAR) wird oftmals für ein nachhaltiges Grundwassermanagement eingesetzt. Trotz der scheinbaren Einfachheit von MAR, kann die Bewertung insbesondere in Bezug auf Machbarkeitsstudien, Planung, aber auch Betrieb herausfordernd sein. Das Fehlen geeigneter Bewertungsmethoden hindert ein optimales Betriebsmanagement, reduziert das Vertrauen der Öffentlichkeit und wirft Fragen über die Auswirkungen von MAR auf das betroffene Ökosystem auf. Die Entwicklung geeigneter Instrumente könnte daher Wasserversorgern helfen, die Nutzung des Grundwassers zu maximieren und gleichzeitig physische, finanzielle und nachhaltige Bedingungen einzuhalten. Als übergeordnetes Ziel kann die Anwendung neuer und fortschrittlicher Instrumente das Verständnis für die zugrunde liegenden Prozesse verbessern und so das Vertrauen in MAR stärken und die erfolgreiche Umsetzung von MAR-Anlagen fördern. Die Arbeit besteht aus drei Hauptteilen, deren Ziele es sind: 1) die Rolle der Modellierung von MAR zu verstehen und Informationslücken durch eine Überprüfung der verfügbaren Modellierungsstudien zu identifizieren; 2) die Verfügbarkeit effizienter datenbankbasierter und analytischer Instrumente einschließlich ihrer Entwicklung und webbasierten Implementierung zu erhöhen; und 3) mit Hilfe von neuen Fortschritten die numerische Modellierung von MAR-Anlagen zu verbessern und zu unterstützen. Eine Literaturrecherche bereits durchgeführter Modellierungsstudien, die vor allem auf numerischen Modellen beruhen, ergab, dass Grundwasserströmungsmodelle am häufigsten zur Beurteilung von MAR-Anlagen eingesetzt werden. Die Modellierungsziele umfassen die Planung und Optimierung des Aufbaus und des Betriebs einer MAR-Anlage sowie deren Auswirkungen auf das Grundwassersystem. Simulationen helfen, die erreichbare Rückgewinnungseffizienz und die auftretenden geochemischen Prozesse zu beurteilen, um das Ausfallrisiko einer geplanten Anlage auch im Hinblick auf langfristige Auswirkungen zu minimieren. Darüber hinaus wird die Standortauswahl und der Einfluss von MAR auf das Eindringen von Meerwasser häufig durch Modellierung analysiert. Die Literaturrecherche diente als Grundlage für das MAR-Modellauswahl-Tool, bei dem in Abhängigkeit von Zielen, Methoden und Modelltypen geeignete Modelle und Fallstudien extrahiert werden können. Weitere Werkzeuge, die auf analytischen Gleichungen zur Bestimmung von Grundwasseraufwölbung, Salzwasserintrusion oder der pumpinduzierten Durchflussreduzierung im Fließgewässer basieren, wurden entwickelt und auf der webbasierten INOWAS-Plattform für einen einfachen Zugang und Nutzung zusammengestellt. Die webbasierten Anwendungen können als Screening-Instrumente zur Beurteilung von MAR-bezogenen Problemen eingesetzt werden. Für eine detailliertere Analyse stellen numerische Modelle nützliche Instrumente zur Analyse von MAR-Anlagen auf verschiedenen Skalen dar. Auf regionaler Ebene ist die Machbarkeit der Umsetzung von MAR an den vorgeschlagenen Standorten oft eine schwierige Frage, da das lokale Grundwassersystem und seine Reaktion auf die Anwendung von MAR nicht hinreichend bekannt sind. Dazu wurde ein Ansatz entwickelt, der numerische Grundwasserströmungsmodellierung und GIS-basierte multikriterielle Entscheidungsanalyse (MCDA) kombiniert, um die Machbarkeit und mögliche Auswirkungen der MAR-Implementierung zu bewerten. Der kombinierte Ansatz wurde im Stadtzentrum von Hanoi, Vietnam, getestet, wo die Ergebnisse darauf hindeuten, dass MAR dazu beitragen könnte, die lokale Übernutzung zu reduzieren und die Bodensenkung zu stoppen. Auf lokaler Ebene bei bestehenden MAR-Systemen ist die Verweilzeit im Untergrund ein kritischer Parameter, der z.B. die Entfernung von Krankheitserregern bestimmt. Da der Einfluss von Viskosität auf die saisonale Verweildauer nicht eindeutig ist, wurde für eine MAR-Anlage in Berlin ein numerisches Grundwasserströmungs- und Wärmetransportmodell erstellt, um die saisonalen Auswirkungen des Prozesses zu bewerten. Die Ergebnisse deuten darauf hin, dass Viskosität einen Einfluss auf die unterirdische Verweilzeit hat und zu einer Verkürzung der Aufenthaltszeiten führt. Auf kleiner Skala stellt die Kolmatierung ein wichtiges Thema dar, das den Erfolg eines MAR-Systems erheblich bestimmt, jedoch in numerischen Modellen häufig vernachlässigt wird. Das numerische ungesättigte Strömungsmodell HYDRUS-1D/2D wurde erweitert, um die Simulation von zeitlich variablen hydraulischen Leitfähigkeiten als vereinfachte Näherung von Kolmatierung zu ermöglichen. Mit Hilfe des zeitlich variablen Skalierungsfaktors in Kombination mit der Speicherrandbedingung konnte der im Labor gemessene, durch Kolmatierung verursachte, ansteigende Wasserspiegel im Brunnen und Infiltrationsbecken reproduziert werden. Die vorgestellten Werkzeuge und numerischen Modellierungsansätze sind nützlich, um eine breite Palette von MAR-spezifischen Fragen zu bewerten, um die mit der Implementierung und dem Betrieb verbundenen Risiken zu managen und die Gesamtleistung und Zuverlässigkeit von MAR-Anlagen zu verbessern. Durch den Einsatz geeigneter empirischer, analytischer und numerischer Werkzeuge trägt die Arbeit dazu bei, dass MAR als eine geeignete und zuverlässige Technik für das Wasserressourcenmanagement angesehen wird.:1 INTRODUCTION 1 2 ASSESSMENT OF MANAGED AQUIFER RECHARGE THROUGH MODELLING 11 3 WEB-BASED EMPIRICAL AND ANALYTICAL TOOLS FOR INITIAL MAR-RELATED ASSESSMENT 29 4 MANAGED AQUIFER RECHARGE FEASIBILITY ASSESSMENT USING GIS-BASED SUITABILITY MAPPING AND NUMERICAL MODELLING 53 5 INFLUENCE OF VISCOSITY ON THE SEASONAL RESIDENCE TIME DURING MAR OPERATION 73 6 SIMULATION OF HYDRAULIC CONDUCTIVITY CHANGES OVER TIME DURING MAR OPERATION 91 7 SCIENTIFIC IMPLICATIONS AND RESEARCH PERSPECTIVES...113 Bibliography 117 A Appendix 143
3

Bewertung von oberflächennahen Grundwasseranreicherungen über Aquifer Storage and Recovery unter Berücksichtigung der Aquiferheterogenität und alternativer Infiltrationsmethoden

Händel, Falk 11 July 2014 (has links)
Die vorliegende Arbeit umfasst im ersten Teil eine Literaturrecherche zu Aquifer Storage and Recovery (ASR) im Allgemeinen und den Einfluss physikalisch-chemischer Prozesse auf ASR. Aus dieser konnte abgeleitet werden, dass durch standortbedingte Untergrundeigenschaften stark unterschiedliche physikalische und chemische Prozesse ablaufen und eine eindeutige Vorhersage zum Verhalten und zur Effizienz von ASR an einem neuen oder bereits genutzten Standort ohne spezifische Informationen nicht möglich ist. Des Weiteren wurde eine Literaturstudie zum Einfluss der transversalen Dispersivität, als Maß für die Vermischung von transportierten Stoffen quer zu einer (natürlichen) Fließrichtung, auf den (reaktiven) Transport durchgeführt. Letztlich wurde im Rahmen einer betreuten Masterarbeit (M. Sc. Chang Liu) eine Bewertung aus der Literatur entnommener transversaler Dispersivitäten durchgeführt. In den weiteren Teilen der Arbeit wurden Fallstudien mit unterschiedlichen Fragestellungen für die Planung und den Betrieb von künstlichen Grundwasseranreicherungen und speziell ASR numerisch modelliert und bewertet. Zuerst wurden numerische Simulationen zum konservativen Transport am Testfeld „Lauswiesen“, Tübingen, Baden-Württemberg durchgeführt. Diese beinhalteten über Direct-Push(DP)-Erkundungsmethoden gewonnene Informationen zur Untergrundstruktur. Die Ergebnisse zeigen, dass zur Vorhersage des standortspezifischen Transports in den „Lauswiesen“ und für vergleichbare hydraulische Situationen, auch in Hinsicht auf ASR, deterministische hydrogeologische Einheiten und ihre situationsgerechte Berücksichtigung in numerischen Modellen höchst relevant sind. Aufbauend auf den genannten Ergebnissen wurde eine Masterarbeit durch Herrn M. Sc. Tsegaye Abera Sereche durchgeführt. Diese Masterarbeit zeigte für diesen Fall erneut die hohe Relevanz deterministischer Strukturen gegenüber kleinskaligen, dreidimensionalen Heterogenitäten für ASR. Weiterführende numerische Simulationen zu einem möglichen ASR-Feldtest am Standort „Lauswiesen“ ergaben, dass dieser unter den gegebenen Untergrundbedingungen nur bei Abweichungen von einem vertretbaren Konzept für einen Ein-Brunnen-Test, z. B. bei sehr großen Infiltrationsmengen, oder durch Umwandlung in einen Zwei-Brunnen-Test durchführbar ist. Während dieser Arbeit wurden gemeinsame Forschungsarbeiten mit dem Kansas Geological Survey, Kansas, USA durchgeführt, welche die Bewertung der Verwendbarkeit von DP-Brunnen als alternative Infiltrationsmethode zu Oberflächenmethoden beinhalteten. Als Teil der gemeinsamen Arbeiten wurde im Rahmen der vorliegenden Arbeit eine synthetisierte, numerische Bewertung der neuen DP-Infiltrationsbrunnen sowie einen Vergleich mit einer herkömmlichen Oberflächeninfiltrationsmethode übernommen. Im Einklang mit der Zielstellung der Arbeit wurde ebenfalls eine numerische Bewertung natürlicher und anthropogener Heterogenitäten auf die Infiltration durchgeführt. Aus den Ergebnissen konnten für die neue Infiltrationsmethode signifikante Vorteile abgeleitet werden. Weitere numerische Modellierungen wurden durchgeführt, um die wesentlichen Ergebnisse auf einen Feldstandort in der Südlichen Steiermark, Österreich, anzuwenden, welcher: a) bereits ein horizontales Versickerungssystem besitzt, b) weitere Systeme erhalten soll und c) letztlich eine besondere Herausforderung für vertikale Versickerungssysteme darstellt. Die Modellierung des vorhandenen Systems zeigt die hohe Komplexität der Infiltrationsprozesse. Jedoch konnten hydraulische Parameter bestätigt und in weitere planerische Simulationen zu Verwendung von DP-basierten Infiltrationsbrunnen eingefügt werden. Diese zeigen, dass ein Brunnenfeld am Standort auf relativ geringem Raum installiert werden kann. Zusätzlich zeigt ein Feldversuch an einem weiteren Standort (Pirna, Sachsen), dass hohe Infiltrationsraten unter Nutzung von DP-Brunnen möglich sind. / The works presented in the thesis include in the first part a literature research on Aquifer Storage and Recovery (ASR) in general and the impacts of different physico-chemical processes on ASR. This research concludes that site-specific subsurface conditions lead to varying physical and chemical processes and that a conclusive prediction of function and efficiency of ASR at any site, in-operation or new site design, is not possible without site-specific information. Additionally, a literature study was conducted that focused on the impacts of transverse dispersivity, as a measure for mixing of transported species perpendicular to the (natural) flow direction, on (reactive) transport. Finally, evaluation of transverse dispersivity data available in the literature was performed, which included a supervision of a master thesis (of M. Sc. Chang Liu). Numerical simulations of case studies for different questions of planning and operation of artificial recharge systems and more specifically ASR were realized for the other parts of the thesis. The first evaluated case was the “Lauswiesen” test site, Tübingen, Baden-Wuerttemberg. This study used new insights into the subsurface structure gained by Direct-Push(DP) exploration methods. The results obtained show that for further works at the site and for comparable hydraulic conditions, also in the view of ASR, deterministic hydrogeological subunits and their consideration in numerical models are critical for prediction of site-specific transport. Based on the previous findings, a master thesis was conducted by M. Sc. Tsegaye Abera Sereche. The master thesis yet again revealed for this case the high relevance of deterministic subunits compared to small-scale, three-dimensional heterogeneities for ASR. Further, numerical simulations of a possible ASR field test at “Lauswiesen” site showed that under the prevailing subsurface conditions, a field test can only be realized when the set-up of a single-well-test is impracticably changed, by e.g. very high infiltration volumes, or by transformation into a two-well-test. During the thesis joint research works were performed with the Kansas Geological Survey, Kansas, USA, which contained the evaluation of the applicability of DP wells as an alternative to surface infiltration methods. As part of the joint work, this thesis presents a synthesized numerical evaluation of the new DP well infiltration as well as a comparison to a common surface infiltration system. Furthermore, in accordance with the main objective of the work, numerical evaluation of natural and anthropogenic heterogeneities was performed. The results concluded the advantages for the DP wells for infiltration process. Further numerical models were implemented to convey the important results to a field site at Southern Styria, Austria, where: a) an existing infiltration system is already in operation, b) further infiltration systems are planned and c) the subsurface conditions are rather challenging for vertical infiltration systems. Modeling of the existent system revealed the high complexity of the infiltration processes. However, hydraulic parameters could be verified and included into planning simulations for DP-based infiltration wells. The findings show, that a well field can be installed at a comparably small land. Additionally, a field test at a further test site (Pirna, Sachsen) indicates that high infiltrations rates are possible when DP wells are used.
4

Optimierung der Standort- und Betriebsparameter von Infiltrationsbecken zur künstlichen Grundwasseranreicherung hinsichtlich quantitativer und qualitativer Effizienz

Fichtner, Thomas 08 November 2021 (has links)
Ein kontinuierlich ansteigender Wasserbedarf, verursacht durch verstärktes Bevölkerungswachstum, zunehmende Urbanisierung und Industrialisierung, einhergehend mit einer Übernutzung der verfügbaren Wasserressourcen, führt weltweit zu einem dauerhaften Absinken der Grundwasserstände. Um das zeitliche Ungleichgewicht zwischen lokalem Wasserbedarf und Verfügbarkeit zu überwinden und die daraus resultierenden negativen Auswirkungen abzumildern, erfolgt im Rahmen einer künstlichen Grundwasseranreicherung die gezielte Anreicherung oder Wiederaufladung eines Aquifers. Dazu wird überschüssiges Oberflächenwasser unter kontrollierten Bedingungen versickert oder infiltriert, um es in Zeiten von Wassermangel zur Verfügung zu stellen oder die ökologischen Randbedingungen zu verbessern. Beim Betrieb der dafür häufig eingesetzten Infiltrationsbecken kommt es in Abhängigkeit von den Standort- (Boden/Klima/Wasserqualität) und den Betriebsparametern (Hydraulische Beladungsrate, Hydraulischer Beladungszyklus) allerdings durch verschiedene Prozesse (Kolmation, Sauerstoff- und Nährstofftransport) häufig zur negativen Beeinflussung der quantitativen und qualitativen Effizienz solcher Anlagen. Bisher durchgeführte Untersuchungen im Labor- und Feldmaßstab sowie die im Zuge des Betriebes bestehender Infiltrationsbecken gewonnenen Daten liefern hauptsächlich Informationen zum Einfluss einzelner Randbedingungen auf die Veränderung der Infiltrationskapazität bzw. die quantitative Effizienz. Allerdings können auf Basis dieser Daten nicht alle offenen Fragen hinsichtlich des Einflusses der Standort- und Betriebsparameter auf die quantitative und qualitative Effizienz von Infiltrationsbecken vollumfänglich und abschließend beantwortet werden. Aufgrund nicht untersuchter Aspekte sowie widersprüchlicher Daten existieren Unsicherheiten bezüglich der Bewertung hinsichtlich des Einflusses der einzelnen Standort- und Betriebsparameter auf die Effizienz solcher Anlagen. Zur Generierung von weiterem Wissen über den Einfluss von Standort- und Betriebsparametern auf die Effizienz von Infiltrationsbecken und zur anschließenden Formulierung von Empfehlungen für eine optimierte Standortauswahl sowie Betriebsweise von Infiltrationsbecken erfolgt die Durchführung von Laborversuchen mittels kleinskaliger und großskaliger, physikalischer Modelle. Es werden verschiedene Infiltrationsszenarien bei wechselnden Randbedingungen (Bodenart, Temperatur, Wasserqualität, Hydraulische Beladungsrate, Hydraulischer Beladungszyklus) durchgeführt. Anhand der gewonnenen Daten kann die Beeinflussung der quantitativen und qualitativen Effizienz durch die verschiedenen Standort- und Betriebsparameter sowie die dadurch beeinflussten Prozesse sehr gut aufgezeigt werden. Das bisher existierende Wissen kann dabei zum Teil bestätigt und um zusätzliche Erkenntnisse erweitert werden. Es zeigt sich, dass eine höhere hydraulische Durchlässigkeit des anstehenden Bodens eine geringere Reduzierung der Infiltrationskapazität durch Kolmationsprozesse verursacht und zudem für eine bessere Sauerstoffverfügbarkeit sorgt. Darüber hinaus wird ersichtlich, dass Bodentexturen mit einem mittleren Porendurchmesser von 230 µm optimale Bedingungen für eine hohe biologische Aktivität einhergehend mit einem Abbau infiltrierter Substanzen bieten. Der Nachweis einer verstärkten Reduzierung der Infiltrationskapazität durch Kolmationsprozesse bei erhöhten Temperaturen, aber nicht vorhandener Sonneneinstrahlung, kann nicht erbracht werden, da das Fließen des infiltrierten Wassers signifikant durch die erhöhte Viskosität beeinflusst wird. Eine schlechtere Wasserqualität, gleichbedeutend mit erhöhten Konzentrationen an abfiltrierbaren Stoffen sowie gelöstem organischen Kohlenstoff, verursacht in den simulierten Infiltrationsszenarien eine stärkere Reduzierung der Infiltrationskapazität. Die physikalischen Kolmationsprozesse tragen dabei den Hauptanteil an der Reduzierung der Infiltrationskapazität. Des Weiteren wird nachgewiesen, dass eine erhöhte HBR zu einer verstärkten Reduzierung der Infiltrationskapazität und zu einer verschlechterten Sauerstoffverfügbarkeit führt. Die Länge der Infiltrations- und Trockenphasen während des simulierten Betriebes von Infiltrationsbecken beeinflusst entscheidend die Reduzierung der Infiltrationskapazität sowie die Sauerstoffverfügbarkeit. Dabei kann gezeigt werden, dass unabhängig von der Länge der Infiltrations- und Trockenphasen eine vollständige Wiederherstellung der Sauerstoffverfügbarkeit innerhalb von 24 h im Anschluss an eine Infiltrationsphase gewährleistet wird. Das Verhältnis von Infiltrations- und Trockenphasen, auch als Hydraulischer Beladungszyklus bezeichnet, hat hingegen nahezu keinen Einfluss auf die quantitative Effizienz. Bei der Betrachtung aller simulierten Infiltrationsszenarien inklusive der Wechselwirkungen zwischen den verschiedenen Standort- und Betriebsparametern können die optimalen Bedingungen für eine hohe quantitative und qualitative Effizienz von Infiltrationsbecken identifiziert werden. Diese sind gegeben beim Vorhandensein eines gut durchlässigen Bodens (hydraulische Leitfähigkeit > 10-4 m s-1), idealerweise mit einem mittleren Porendurchmesser von 230 µm, gepaart mit einer intermittierenden Infiltration von Wasser höherer Qualität ((AFS ≤ 10 mg L-1, BDOC ≤ 10 mg L-1) und der Vermeidung von Infiltrationsphasen länger als 24 h. Eine Widerspiegelung der experimentellen Ergebnisse sowie eine Vorhersage der Reduzierung der Infiltrationskapazität ist mit dem ausgewählten, analytischen Modell nach Pedretti et al., 2012 aufgrund der unzureichend implementierten Berücksichtigung veränderlicher Eingangsparameter nur bedingt möglich. Auf Basis der gewonnenen Daten und dem damit einhergehenden erweiterten Wissen über den Einfluss von Standort- und Betriebsparametern auf die Effizienz von Infiltrationsbecken können schlussendlich Empfehlungen für die Standortauswahl und die optimale Betriebsweise ausgesprochen werden.:1 Einleitung...1 2 Grundlagen der künstlichen Grundwasseranreicherung...7 3 Vorliegende Erkenntnisse zur Beeinflussung der quantitativen und qualitativen Effizienz durch Standort- und Betriebsparameter...38 4 Methoden...49 5 Gewonnene Erkenntnisse hinsichtlich der Beeinflussung der quantitativen und qualitativen Effizienz durch Standort- und Betriebsparameter...87 6 Empfehlungen zur Optimierung von Standort- und Betriebsbedingungen von Infiltrationsbecken zur künstlichen Grundwasseranreicherung...128 7 Schlussfolgerung und Ausblick...136 / A continuously rising demand for water, caused by increased population growth, growing urbanization and industrialization, accompanied by overuse of available water resources, is leading to a permanent drop in groundwater levels worldwide. In order to overcome the temporal imbalance between local water demand and availability and to mitigate the resulting negative effects, artificial groundwater recharge involves the managed enrichment or recharging of an aquifer. For this purpose, excess surface water is percolated or infiltrated under controlled conditions in order to make it available in times of water shortage or to improve the ecological boundary conditions. However, the quantitative and qualitative efficiency of frequently used infiltration basins during the operation is often negatively influenced by a wide variety of processes (clogging, oxygen and nutrient transport), depending on the location (soil/climate/water quality) and the operating parameters (loading rate, loading cycle). Investigations conducted to date on laboratory and field scale as well as data obtained during the operation of existing infiltration basins provide information on the influence of individual boundary conditions on the change in infiltration capacity or quantitative efficiency. However, not all open questions regarding the influence of site specific and operating parameters on the quantitative and qualitative efficiency of infiltration tanks can be answered completely and conclusively on the basis of these data. Due to aspects that have not been investigated and contradictory data, there are uncertainties in the evaluation regarding the influence of the individual site and operating parameters on the efficiency of the plants. Laboratory tests using small-scale and large-scale physical models were carried out, in order to generate further knowledge about the influence of site specific and operating parameters on the efficiency of infiltration basins and to formulate subsequently recommendations for an optimised site selection and operation of these plants. Various infiltration scenarios were carried out under changing boundary conditions (soil type, temperature, water quality, hydraulic loading rate, hydraulic loading cycle). Based on the data obtained, the influence on the quantitative and qualitative efficiency by the various site specific and operating parameters and the processes influenced by them can be demonstrated very well. The existing knowledge can be partially confirmed and extended by additional findings. It shows that a higher hydraulic permeability of the existing soil causes a lower reduction of the infiltration capacity by clogging processes and provides also a better oxygen availability. Furthermore, it can be observed that soil textures with an average pore diameter of 230 µm offer optimal conditions for high biological activity combined with a strong degradation of infiltrated substances. In case of higher temperatures but without solar radiation, an increased reduction of the infiltration capacity by clogging processes cannot be observed, since the flow of the infiltrated water is significantly influenced by the increased viscosity. In the simulated infiltration scenarios, poorer water quality, synonymous with increased concentrations of filterable substances as well as dissolved organic carbon, cause a stronger reduction of the infiltration capacity. Physical clogging processes are contributing the major part to the reduction of the infiltration capacity. Furthermore, it can be shown that an increased hydraulic loading rate leads to an increased reduction of the infiltration capacity and to a decreased oxygen availability. The length of the infiltration and drying phases during the simulated operation of infiltration basins has a decisive influence on the reduction of the infiltration capacity and the oxygen availability. It is demonstrated that regardless of the length of the infiltration and drying phases, a complete restoration of oxygen availability can be guaranteed within 24 h following an infiltration phase. In contrast, the ratio of infiltration and dry phases, also known as the hydraulic loading cycle, has almost no influence on the quantitative efficiency. Optimal conditions for a high quantitative and qualitative efficiency of infiltration basins can be identified, when considering all simulated infiltration scenarios including the interactions between the different site specific and operating parameters. These are given in the presence of a well-permeable soil (hydraulic conductivity > 10-4 m s-1), ideally with an average pore diameter of 230 µm, coupled with an intermittent infiltration of water of higher quality ((AFS ≤ 10 mg L-1, BDOC ≤ 10 mg L-1) and the prevention of infiltration phases longer than 24 h. A reflection of the experimental results as well as a prediction of the reduction of the infiltration capacity with the selected analytical model according to Pedretti et al., 2012 is only conditionally possible due to the insufficiently implemented consideration of variable input parameters. Recommendations for site selection and optimal operation were finally made on the basis of the data obtained and the resulting extended knowledge about the influence of site specific and operating parameters on the efficiency of infiltration basins.:1 Einleitung...1 2 Grundlagen der künstlichen Grundwasseranreicherung...7 3 Vorliegende Erkenntnisse zur Beeinflussung der quantitativen und qualitativen Effizienz durch Standort- und Betriebsparameter...38 4 Methoden...49 5 Gewonnene Erkenntnisse hinsichtlich der Beeinflussung der quantitativen und qualitativen Effizienz durch Standort- und Betriebsparameter...87 6 Empfehlungen zur Optimierung von Standort- und Betriebsbedingungen von Infiltrationsbecken zur künstlichen Grundwasseranreicherung...128 7 Schlussfolgerung und Ausblick...136
5

Reactive transport processes in artificially recharged aquifers

Greskowiak, Janek Johannes 17 October 2006 (has links)
In der vorliegenden Dissertation sollten die hydrogeochemischen Prozesse herausgearbeitet werden, die für die Wasserqualitätsänderung während eines ASR Experiments in Bolivar, Südaustralien und während der Versickerung in einem künstlichen Grundwasseranreicherungsbecken in Berlin von Bedeutung waren. Reaktive Stofftransportmodellierung des ASR Experiments in Bolivar, Südaustralien zeigte, dass die hydrochemischen Veränderungen in der direkten Umgebung des Injektionsbrunnens während der Speicherphase nur durch rapide Änderungen der Sauerstoff- und Nitrat reduzierenden Bakterienmasse erklärt werden können. Die hydrochemischen Veränderungen in größerer Distanz zum Injektionsbrunnen wurden überwiegend durch Ionenaustauschprozesse und Kalzitlösung verursacht. Geochemische und hydraulische Messungen unter einem Sickerbecken in Berlin zeigten, dass die beobachteten geochemischen Änderungen im Sickerwasser mit den periodisch auftretenden wassergesättigten/wasserungesättigen Bedingungen unter dem Becken einhergehen. Während der ungesättigten Periode wird Luft unter das Becken gezogen und führt zur plötzlichen Reoxidierung von bereits in der gesättigten Periode gebildeten Eisensulfiden und zur beschleunigten Mineralisation von sedimentärem organischem Kohlenstoff. Reaktive Stofftransportmodellierung auf größerer Skale zeigte, dass allein die saisonalen Temperaturunterschiede im Infiltrationswasser für die beobachtete zeitliche und räumliche Dynamik der Redoxzonen im weiteren Abstrom des Sickerbeckens verantwortlich sind. Das Abbauverhalten der Arzneimittelsubstanz Phenazon hängt ausschließlich von der Verfügbarkeit von gelöstem Sauerstoff und damit indirekt von der Wassertemperatur im Aquifer ab. In der vorliegenden Arbeit wird deutlich, dass ein adäquates Verständnis der wasserqualitätsändernden Prozesse in künstlichen Anreicherungsystemen nur dann erreicht werden kann wenn Strömung, Transport und reaktive Prozesse, im Feld als auch in der Modellierung, simultan betrachtet werden. / In this thesis, three major studies were carried out in order to understand the key factors controlling the water quality changes that occurred during a reclaimed water Aquifer Storage and Recovery (ASR) experiment at Bolivar, South Australia and during ponded infiltration in Berlin, Germany. Multi-component reactive transport modelling of the ASR experiment suggested that during the storage phase, dynamic changes in bacterial mass have a significant influence on the local geochemistry in the vicinity of the injection well. Water quality changes further away from the injection well were mainly driven by ion exchange and calcite dissolution. Geochemical and hydraulic measurements below an artificial recharge pond in Berlin, Germany, showed that the observed dynamic changes of the hydrochemistry within the seepage water are strongly linked to the periodic saturated/unsaturated hydraulic conditions below the pond. During unsaturated conditions, atmospheric oxygen penetrates from the pond margins to the centre below the pond, leading to (i) a sudden re-oxidation of sulphide minerals that have formed previously during saturated conditions and (ii) an enhanced mineralisation of sedimentary particulate organic carbon. Reactive transport modelling showed that at larger scale, seasonal temperature changes of the infiltration water are the key control for the observed temporal and spatial redox dynamics further downstream the recharge pond. Moreover, the degradation behaviour of the pharmaceutically residue phenazone solely depends on the availability of dissolved oxygen, and thus indirectly on the water temperature within the aquifer. Overall this thesis shows that a sound understanding and analysis of the key processes affecting the water quality changes during artificial recharge of groundwater could only be achieved when flow, transport and reactive processes are considered simultaneously, both in the field and during modelling.

Page generated in 0.1205 seconds