1 |
應用文字探勘分析網路團購商品群集之研究 -以美食類商品為例 / The study of analyzing group-buying goods clusters by using text mining – exemplified by the group-buying foods趙婉婷 Unknown Date (has links)
網路團購消費模式掀起一陣風潮,隨著網路團購市場接受度提高,現今以團購方式進行購物的消費模式不斷增加,團購商品品項也日益繁多。為了使網路團購消費者更容易找到感興趣的團購商品,本研究將針對團購商品進行群集分析。
本研究以國內知名團購網站「愛合購」為例,以甜點蛋糕分類下的熱門美食團購商品為主,依商品名稱找尋該商品的顧客團購網誌文章納入資料庫中。本研究從熱門度前1000項的產品中找到268項產品擁有顧客團購網誌586篇,透過文字探勘技術從中擷取產品特徵相關資訊,並以「k最近鄰居法」為基礎建置kNN分群器,以進行群集分析。本研究依不同的k值以及分群門檻值進行分群,並對大群集進行階段式分群,單項群集進行質心合併,以尋求較佳之分群結果。
研究結果顯示,268項團購商品經過kNN分群器進行四個階段的群集分析後可獲得28個群集,群內相似度從未分群時的0.029834提升至0.177428。在經過第一階段的分群後,可將商品分為3個主要大群集,即「麵包類」、「蛋糕類」以及「其他口感類」。在進行完四個階段的分群後,「麵包類」可分為2種類型的群集,即『麵包類產品』以及『擁有麵包特質的產品』,而「蛋糕類」則是可依口味區分為不同的蛋糕群集。產品重要特徵詞彙不像一般文章的關鍵字詞會重複出現於文章中,因此在特徵詞彙過濾時應避免刪減過多的產品特徵詞彙。群集特性可由詞彙權重前20%之詞彙依人工過濾及商品出現頻率挑選出產品特徵代表詞來做描繪。研究所獲得之分群結果除了提供團購消費者選擇產品時參考外,也可幫助團購網站業者規劃更適切的行銷活動。本研究亦提出一些未來研究方向。 / Group-buying is prevailing, the items of merchandise diverse recently. In order to let consumer find the commodities they are interested in, the research focus on the cluster analysis about group-buying products and clusters products by the features of them.
We catch the blogs of products posted by customers, via text mining to retrieve the features of products, and then establish the kNN clustering device to cluster them. This research sets different threshold values to test, and multiply clusters big groups, and merges small groups by centroid, we expect to obtain the best quality cluster.
From the results, 268 items of group-buying foods can be divided into 28 clusters, and the mean of Intra-Similarity also can be improved. The 28 clusters can be categorized to three main clusters:Bread, Cake, and Other mouthfeel foods. We can define and name each cluster by catch the top twenty percent of the keywords in each cluster. The results of this paper could help buyers find similar commodities which they like, and also help sellers make the great marketing activity plan.
|
Page generated in 0.0675 seconds