• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Channel Reconstruction for High-Rank User Equipment

Zhao, Yu January 2019 (has links)
In a 5 Generation massive Multiple Input Multiple Output radio network, the Channel State Information is playing a central role in the algorithm design and system evaluation. However, Acquisition of Channel State Information consumes system resources (e.g. time, frequency) which in turn decrease the link utilization, i.e. fewer resources left for actual data transmission. This problem is more apparent in a scenario when User Equipment terminals have multi-antennas and it would be beneficial to obtain Channel State Information between Base Station and different User Equipment antennas e.g. for purpose of high rank (number of streams) transmission towards this User Equipment. Typically, in current industrial implementations, in order to not waste system resources, Channel State Information is obtained for only one of the User Equipment antennas which then limits the downlink transmission rank to 1. Hence, we purpose a method based on Deep learning technique. In this paper, multi-layer perception and convolutional neural network are implemented. Data are generated by MATLAB simulator using the parameters provided by Huawei Technologies Co., Ltd. Finally, the model proposed by this project provides the best performance compared to the baseline algorithms. / I ett 5-generationsmassivt massivt multipel-inmatningsradio-nätverk spelar kanalstatens information en central roll i algoritmdesignen och systemutvärderingen. Förvärv av Channel State Information konsumerar emellertid systemresurser (t.ex. tid, frekvens) som i sin tur minskar länkanvändningen, dvs färre resurser kvar för faktisk dataöverföring. Detta problem är mer uppenbart i ett scenario när användarutrustningsterminaler har flera antenner och det skulle vara fördelaktigt att erhålla kanalstatusinformation mellan basstationen och olika användarutrustningsantenner, t.ex. för överföring av hög rang (antal strömmar) till denna användarutrustning. I nuvarande industriella implementeringar erhålls kanalstatusinformation för endast en av användarutrustningens antenner för att inte slösa bort systemresurser, vilket sedan begränsar överföringsrankningen för nedlänkning till 1. Därför syftar vi på en metod baserad på Deep learning-teknik. I detta dokument implementeras flerskiktsuppfattning och inblandat neuralt nätverk. Data genereras av MATLAB-simulator med hjälp av parametrarna som tillhandahålls av Huawei Technologies Co., Ltd. Slutligen ger modellen som föreslås av detta projekt bästa prestanda jämfört med baslinjealgoritmerna.

Page generated in 0.1203 seconds