• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorial and graph theoretical aspects of two-edge connected reliability

Reinwardt, Manja 30 October 2015 (has links) (PDF)
Die Untersuchung von Zuverlässigkeitsnetzwerken geht bis zum frühen 20. Jahrhundert zurück. Diese Arbeit beschäftigt sich hauptsächlich mit der Zweifach-Kantenzusammenhangswahrscheinlichkeit. Zuerst werden einfache Algorithmen, die aber für allgemeine Graphen nicht effizient sind, gezeigt, zusammen mit Reduktionen. Weiterhin werden Charakterisierungen von Kanten bezogen auf Wegemengen gezeigt. Neue strukturelle Bedingungen für diese werden vorgestellt. Neue Ergebnisse liegen ebenfalls für Graphen hoher Dichte und Symmetrie vor, genauer für vollständige und vollständig bipartite Graphen. Naturgemäß sind Graphen von geringer Dichte hier einfacher in der Untersuchung. Die Arbeit zeigt Ergebnisse für Kreise, Räder und Leiterstrukturen. Graphen mit beschränkter Weg- beziehungsweise Baumweite haben polynomiale Algorithmen und in Spezialfällen einfache Formeln, die ebenfalls vorgestellt werden. Der abschließende Teil beschäftigt sich mit Schranken und Approximationen.
2

Combinatorial and graph theoretical aspects of two-edge connected reliability

Reinwardt, Manja 30 October 2015 (has links)
Die Untersuchung von Zuverlässigkeitsnetzwerken geht bis zum frühen 20. Jahrhundert zurück. Diese Arbeit beschäftigt sich hauptsächlich mit der Zweifach-Kantenzusammenhangswahrscheinlichkeit. Zuerst werden einfache Algorithmen, die aber für allgemeine Graphen nicht effizient sind, gezeigt, zusammen mit Reduktionen. Weiterhin werden Charakterisierungen von Kanten bezogen auf Wegemengen gezeigt. Neue strukturelle Bedingungen für diese werden vorgestellt. Neue Ergebnisse liegen ebenfalls für Graphen hoher Dichte und Symmetrie vor, genauer für vollständige und vollständig bipartite Graphen. Naturgemäß sind Graphen von geringer Dichte hier einfacher in der Untersuchung. Die Arbeit zeigt Ergebnisse für Kreise, Räder und Leiterstrukturen. Graphen mit beschränkter Weg- beziehungsweise Baumweite haben polynomiale Algorithmen und in Spezialfällen einfache Formeln, die ebenfalls vorgestellt werden. Der abschließende Teil beschäftigt sich mit Schranken und Approximationen.

Page generated in 0.0534 seconds