• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Karbonatisering av riven betong / Carbonation of Demolished Concrete

Hussini, Taher, Julio, Cruz Davila January 2023 (has links)
This study investigates the carbonation process in concrete, where carbon dioxide is naturally absorbed by the concrete over time. Crushing the concrete into smaller fractions has the potential to accelerate this process. The study aims to evaluate the carbon dioxide reduction through the method of carbonation of crushed concrete, in collaboration with Bjerking and Castellum for their project in Främre Boländerna, Uppsala. Calculation models based on the Swedish standard EN 16757 are used to assess carbon dioxide uptake, which is compared with data obtained from concrete samples taken from buildings scheduled for demolition. These models are used to estimate carbon dioxide uptake during the usage phase of concrete as well as after demolition and crushing. Results indicate that carbonation of crushed concrete has the potential to effectively capture about a maximum of 75 % of the carbon dioxide emissions during calcination. It is found that the carbon dioxide uptake for a concrete wall after 74 years of usage is at 13 %, but this value can increase to 62 % within 4 months after crushing, given optimal waste management practices. These results highlight the impact of crushing and optimal waste management system on achieving carbon dioxide reduction through carbonation. Moreover, the result demonstrates that fractions smaller than 4 millimeters exhibit rapid carbonation, occurring within a few days, while larger fractions in the range of 16–32 millimeters undergo carbonation over a span of several years to a century. The size of the fractions and their proportion in the crushed concrete greatly influence carbon dioxide uptake. Under different fraction conditions, carbon dioxide uptake varies between 59 % and 84 %, emphasizing the impact of fraction composition on carbon dioxide uptake.  The conclusions of this study indicate that crushing concrete for the purpose of carbonation can reduce carbon dioxide emissions from calcination in cement manufacturing. By implementing an optimal waste management system, the carbonation process can be accelerated and utilized within a shorter time frame. Furthermore, the results demonstrate that the ratio of fractions of the crushed concrete has a significant influence on carbon dioxide uptake. However, further research specifically focused on concrete crushing is required to provide a definitive answer. / I denna studie undersöks karbonatiseringsprocessen i betong, en naturlig process där koldioxid från omgivningen absorberas av betongen under dess livslängd. Syftet med undersökningen är att utvärdera möjligheterna för att skapa koldioxidsänka genom karbonatisering av riven betong. Detta görs i samarbete med Bjerking och Castellum inom ramen för deras projekt i Främre Boländerna i Uppsala. För att utvärdera koldioxidupptaget används kalkyleringsmodeller baserade på svensk standard EN 16757 som sedan jämföras med data från betongprover från byggnader som ska rivas. Dessa modeller används för att uppskatta koldioxidupptaget av betong under användarfas och efter rivning och krossning. Studien visar att karbonatisering av riven betong har en potential till att vara en effektiv metod för att maximalt ta upp 75 % av koldioxidutsläppen från kalcinering. Det visar sig även att koldioxidupptaget för en betongvägg efter 74 år i användarfas ligger på 13 %, detta kan öka till 62 % endast 4 månader efter krossning vid optimal avfallshantering. Detta resultat visar effekten av krossning och ett optimalt avfallssystem för att skapa en koldioxidsänka genom karbonatisering. Vidare framgår det att fraktioner på mindre än 4 millimeter kan karbonatiseras på några dagar medan fraktioner som 16–32 millimeter karbonatiseras inom några år till 100 år. Storleken på fraktioner och fraktionsandel av den krossade betongen påverkar koldioxidupptaget avsevärt. Vid två olika förhållanden mellan fraktionerna varierar koldioxidupptaget mellan 59 % och 84 % vilket visar effekten av fraktionsandelen på koldioxidupptaget.  Slutsatserna i denna studie tyder på att krossning av  betong för ändamålet karbonatisering kan minska koldioxidutsläpp från kalcinering vid cementtillverkning. Genom att implementera ett optimalt avfallssystem kan karbonatiseringsprocessen accelereras och utnyttjas inom en kortare tidsram. Vidare visar resultatet att förhållandet mellan fraktioner av den krossade betongen har en betydande inverkan på koldioxidupptaget. Det behövs dock fler undersökningar specifikt inom krossning av betong för att ge ett definitivt svar.

Page generated in 0.1359 seconds