• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock

Kantarelis, Efthymios January 2014 (has links)
The current societal needs for fuels and chemical commodities strongly depend on fossil resources. This dependence can lead to economic instabilities, political problems and insecurity of supplies. Moreover, global warming, which is associated with the massive use of fossil resources, is a dramatic “collateral damage” that endangers the future of the planet. Biomass is the main renewable source available today that can, produce various liquid, gaseous and solid products. Due to their lignocellulosic origin are considered CO2 neutral and thus can generate CO2 credits. Biomass processing can meet to the challenge of reducing of fossil resources by producing a liquid feedstock that can lessen the “fossil dependence” and /or meet the increased demand via a rapidly emerging thermochemical technology: pyrolysis. The ultimate goal of this process is to produce liquid with improved properties that could directly be used as liquid fuel, fuel additive and/or feedstock in modern oil refineries and petrochemical complexes. However, the liquids derived from biomass thermal processing are problematic with respect to their handling and end use applications. Thus, alternative routes of advanced liquid feedstock production are needed. Heterogeneous catalysis has long served the oil refining and petrochemical industries to produce a wide range of fuels and products. The combination of biomass pyrolysis and heterogeneous catalysis (by bringing in contact the produced vapours/liquids with suitable catalysts) is a very promising route. In this dissertation, the exploitation of biomass to produce of liquid feedstock via pyrolysis over a multifunctional catalyst and in a steam atmosphere is investigated.  Steam pyrolysis in a fixed bed reactor demonstrated that steam can be considered a reactive agent even at lower temperatures affecting the yields and the composition of all the products. The devolatilisation accelerates and the amount of final volatile matter in the char. Fast pyrolysis in the presence of steam results in improved and controlled thermal decomposition of the biomass; higher liquid yields and slightly deoxygenated liquid products are also obtained. Steam pyrolysis over a bi-metallic Ni-V catalyst can produce liquids of improved quality (lower O content) and also provide routes for selective deoxygenation. However, a decrease in liquid yield was observed. The combination of metal and acid catalysts (Ni-V/HZSM5) shows enhanced deoxygenation activity and increased H preservation in the produced liquid. The final O content in the liquid was 12.83wt% at a zeolite (HZSM5) loading of~75wt%; however, the yield of the obtained liquid was substantially decreased. Moreover, increased coke formation on the catalyst was observed at highest zeolite rate. The increased catalyst space time (τ) results in a lower liquid yield with reduced oxygen (7.79 wt% at τ =2h) and increased aromatic content. The coke deposited per unit mass of catalyst is lower for longer catalyst space times, while the char yield seems to be unaffected. The evaluation of the stability of the hybrid catalyst showed no significant structural defects and activity loss when the catalyst was regenerated at a low temperature (550οC). / Det nuvarande samhällets behov av bränslen och kemiska produkter är starkt knutet till fossila resurser. Detta beroende kan leda till ekonomisk instabilititet, politiska svårigheter och osäker leveranssäkerhet. Dessutom riskeras allvarliga skador i framtiden på grund av global uppvärmning, vilket är relaterat till det ökande och massiva användandet av fossila bränslen.   Biomassa är en förnybar resurs som är tillgänglig idag, möjlig att utnyttja för produktion av diverse flytande, gasformiga och fasta produkter. Dessa produkter, beroende på biogeniskt ursprung, betraktas som koldioxidneutrala och kan därför generera koldioxidkrediter. Processande av biomassa kan möta utmaningen av minskad fossilbränsleanvändning, genom produktion av flytande råvara som kan reducera beroendet och/eller möta ökad efterfrågan, via en snabbt expanderande termokemisk teknik - pyrolys.    Det slutgiltiga målet med en sådan process är att producera en flytande produkt med förbättrade egenskaper som direkt skulle kunna användas som flytande bränslen, bränsleadditiv och/eller som råmaterial i moderna oljeraffinaderier och petrokemiska komplex. Vätskor som utvinns från termiska processer är problematiska med avseende på hantering och slutanvändningen i olika applikationer, därmed behövs olika spår för produktion av avancerade flytande råvaror. Heterogena katalysen har länge tjänat raffinaderi- och petrokemisk industri, som producerar ett brett utbud av bränslen och produkter, lämpliga för säker användning. Kombinationen av biomassapyrolys och heterogen katalys  (genom att bringa pyrolysångorna i kontakt med en lämplig katalysator) är ett väldigt lovande spår. I denna avhandling undersöks användningen av biomassa för produktion av flytande råvara, via pyrolys över en flerfunktionel katalysator i ångatmosfär. Ångpyrolys i en fastbäddsreaktor visade att ånga kan betraktas som ett reaktivt medium,  även vid låga temperaturer, som påverkar utbyten och sammansättning av alla produkter. Avgasningen sker snabbare och den slutliga flykthalten i kolresterna blir lägren vid användning av ånga. Snabbpyrolys i ångatmosfär resulterar i förbättrad och mer kontrollerad termisk nedbrytning av biomassa, vilket ger ett högre vätskeutbyte och en något deoxygenerad flytande produkten. ångpyrolys i kombination med bimetalliska NiV-katalysatorer, ger upphov till en flytande råvara med förbättrad kvalitet och selektiv deoxygenering. Dock med ett minskande utbyte som följd. Kombinationen av metall och en sur katalysator (Ni-V/HZSM5) visade förstärkt deoxygenering med bibehållen vätehalt i den flytande produkten. Den slutliga syrehalten i vätskan var 12.83 vikt% vid en zeolithalt (HZSM5) på 75 vikt%, dock med ett kraftigt minskande vätskeutbyte. Dessutom noterades ökad koksbildning på katalysatormaterialet med den högsta zeolithalten. Ökad rymd-tid  för katalysatorn (τ) ger ett lägre vätskeutbyte med reducerad syrehalt (7.79 vikt% vid τ=2h) och ökad aromathalt. Koksbildning på ytan, per massenhet katalysatormaterial, minskade vid längre rymd-tider medan utbytet av kolrester förblev opåverkat.  Undersökningen av stabiliteten hos hybridkatalysatorn visade inga strukturella defekter och ingen signifikant minskad aktivitet efter regenerering vid låg temperatur (550οC). / Οι σύγχρονες ανάγκες της κοινωνίας για παραγωγή υγρών καυσίμων και χημικών προϊόντων εξαρτώνται από τους ορυκτούς πόρους. Αυτή η εξάρτηση μπορεί να οδηγήσει σε οικονομικά προβλήματα, πολιτκή αστάθεια, όπως επίσης και αβεβαιότητα στις προμήθειες της ενεργειακής εφοδιαστικής αλυσίδας. Επιπροσθέτως, μια δραματική «παράπλευρη απώλεια» η οποία θέτει σε κίνδυνο το μέλλον του πλανήτη είναι η υπερθέρμανσή του, η οποία έχει συσχετισθεί με την εκτεταμένη χρήση ορυκτών πόρων. Σήμερα, η βιομάζα είναι η μόνη ανανεώσιμη πηγή από την οποία μπορούν να παραχθούν υγρά, αέρια και στερεά προϊόντα, που λόγω της λιγνοκυταρρινικής τους προελεύσεως, η συνεισφορά τους στις εκομπές CO2 θεώρειται μηδενική. Η θερμοχημική επεξεργασία της βιομάζας συνεισφέρει στον περιορισμό της χρήσης ορυκτών πόρων, με την παραγωγή υγρών προϊόντων, τα οποία μπορούν να μειώσουν την εξάρτηση ή /και την αυξημένη ζήτηση μέσω μιας ταχέως αναπτυσόμενης τεχνολογίας, της πυρόλυσης. Στόχος της διεργασίας είναι η παραγωγή υγρών προϊόντων με ιδιότητες, που επιτρέπουν την απευθείας χρήση τους ως υγρά καύσιμα ή ως πρώτη ύλη, για την παραγώγη χημικών προϊόντων σε συγχρονες μονάδες διύλισης πετρελαίου και σε πετροχημικά συγκτροτήματα. Εν τούτοις, τα υγρά προϊόντα της θερμικής διάσπασης (πυρόλυση) είναι προβληματικά στη διαχείρηση και στις τελικές τους εφαρμογές, λόγω της σύστασής τους. Ως εκ τούτου, απαιτούνται νέες τεχνικές για παραγωγή προηγμένων υγρών προοϊόντων. Η ετερογενής κατάλυση έχει επιτυχώς εφαρμοσθεί στην πετρελαϊκή και χημική βιομηχανία, παράγοντας ένα μεγάλο εύρος προϊόντων. Ο συνδυασμός της με την πυρόλυση (φέρνοντας σε επαφη τα υγρά/ατμούς με κατάλληλο καταλύτη) αποτελεί μια πολλά υποσχόμενη ενναλακτική. Στην παρούσα διατριβή μελετάται η αξιοποίηση βιομάζας για παραγωγή υγρών προϊόντων μέσω καταλυτικής πυρόλυσης, με χρήση πολυλειτουρικού καταλύτη (multi-functional catalyst) υπό την παρουσία ατμού. Η χρήση ατμου κατά τη διαρκειά πυρόλυσης βιομαζας σε αντιδραστήρα σταθερής κλίνης, μεταβάλει τη σύσταση των επιμέρους προϊόντων. Η παρουσία ατμού έχει ως αποτέλεσμα την ταχύτερη αποπτητικοποίηση του υλικού, ενώ παράλληλα η περιεκτικότητα του υπολειπόμενου εξανθρακώματος σε πτητικά είναι μικρότερη. Τα πειραματικά αποτελέσματα ταχείας πυρόλυσης σε αντιδραστήρα ρευστοστερεάς κλίνης δείχνουν ό,τι η χρήση ατμού βελτιώνει την θερμική διάσπαση της βιομαζας, αυξάνοντας την απόδοση σε υγρά προϊοντά, ενώ παράλληλα βοηθάει στην αποξυγόνωσή τους. Ο συνδυασμός της πυρόλυσης υπό την παρουσία ατμού και διμεταλλικού καταλύτη νικελίου–βαναδίου μπορεί να  βελτιώσει την ποιότητα των παραγόμενων υγρών (αποξυγόνωση) με παραλλήλη μείωση της απόδοσής τους, ενώ μπορεί να  παράγει προϊόντα εκλεκτικής αποξυγόνωσης. Συνδυασμός μεταλλικών και ζεολιθικών καταλυτών (Ni-V/HZSM5) εμφανίζει βελτιωμένη δραστικότητα στις αντιδράσεις αποξυγόνωσης, με παράλληλη συγκράτηση υδρογόνου (Η) στα υγρά προϊόντα. Η τελική περιεκτικότητα των υγρών προϊόντων σε οξυγόνου (Ο) μετά από 90 min αντίδρασης είναι 12.83 wt%, με περιεκτικότητα ζεόλιθου (ΗZSΜ5) ~75 wt% στον καταλύτη. Ωστόσο, η αυξηση της περεικτικότητας σε ζεόλιθο έχει ως αποτέλεσμα την αύξηση των επικαθήσεων άνθρακα επάνω στον κατάλυτη, καθώς και την σημαντική μειώση της απόδοσης των υγρών προϊόντων (24.35wt% επι ξηρής βιομάζας).  Η αύξηση του χώρου χρόνου του καταλύτη (τ) έχει ως αποτέλεσμα: τη μείωση των υγρών προϊόντων, τη μείωση του περιεχόμενου Ο στα υγρά προϊόντα (7.79 wt% at τ =2h), την αύξηση των αρωματικών υδρογονανθράκων και τη μείωση του επικαθήμενου κωκ ανά μονάδα μάζας καταλύτη. Η απόδοση του εξανθρακώματος παρέμεινε πρακτικά αμετάβλητη. Η αναγέννηση του υβριδικού καταλύτη σε χαμηλές θερμοκρασιές (550οC) δεν επέφερε σημαντικές δομικές αλλαγές και απώλεια δραστικότητας. / <p>QC 20140306</p>
2

Low-carbon hydrogen production from waste plastics via pyrolysis and in-line catalytic cracking process / Vätgasproduktion med låga kolutsläpp av plastavfall via pyrolys kombinerad med katalytisk reformering

Jin, Yanghao January 2022 (has links)
This study develops a novel pyrolysis process combined with in-line catalytic reforming toproduce high purity hydrogen and carbon products from waste plastics. The input resource is waste plastic material in the form of discarded Covid masks. Results show that for the optimized pyrolysis followed by in-line biochar-based catalytic reforming process, the hydrogen yield is 98.2 mg/g-mask (up to 87% purity), and the carbonyield is 642.4 mg/g-mask, with over 70% of the waste plastic being completely cracked to elemental carbon and hydrogen. The overall process has virtually no CO2 emissions. The use of biomass char catalysts has been studied to contribute to increased hydrogen yield. This is because the unique porous structure of the biochar catalyst increases the residence time of the pyrolysis vapor in the catalytic layer, allowing sufficient cracking of the macromolecular vapor, therefore, increasing the hydrogen yield. The process is also facilitated by the cracking temperature, which increases the cracking of the pyrolysis vapor, resulting in an increase in char yield. However, high temperatures may breakdown the structure of the biomass char catalyst, causing more of the pyrolysis vapor to be converted to CH4, reducing the hydrogen yield. The optimum hydrogen yield was obtained at process parameters of a Biochar catalyst-to-Maskratio (C/M ratio) of 2 and a cracking temperature of 900 oC. / Detta examensarbete utvecklar en ny pyrolysprocess kombinerad med en katalytisk reformeringsprocess i följd för att producera högrenade väte- och kolprodukter från plastavfall. Resursen till processen består av avfallsprodukter i form av kasserade munskydd. Resultaten visar att för den optimerade pyrolys- och biokol-katalytiska reformeringsprocessen är vätgasavkastningen 98,2 mg/g plastavfall (upp till 87 % renhet) och kolavkastningen 642,4 mg/g plastavfall, med över 70 % av plastavfallet fullständigt knäckt till enkla kol- och vätemolekyler. Den genomgripande processen har praktiskt taget inga koldioxidutsläpp. Användningen av biokol-katalysatorer av biomassa har studerats för att bidra till ett ökat vätgasutbyte. Detta beror på att biokolkatalysatorns unika porösa struktur ökar uppehållstiden för pyrolysångorna i det katalytiska skiktet, vilket möjliggör tillräcklig krackning av de makromolekylära ångorna och därmed ökar vätgasutbytet. Processen underlättas också av krackningstemperaturen, som ökar krackningen av pyrolysångorna, vilket leder till ökad kolavkastning. Höga temperaturer kan dock bryta ned strukturen hos katalysatorn för biomassakol, vilket gör att en större del av pyrolysångorna omvandlas till CH4, vilket minskar vätgasutbytet. Det optimala vätgasutbytet uppnåddes vid C/M-parameter (katalysator-till-munskydd förhållande) = 2och en krackningstemperatur på 900 0C.

Page generated in 0.0928 seconds