• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 14
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Katepsin L z klíštěte obecného: analýza proteolytické aktivity a její regulace / Cathepsin L from the hard tick Ixodes ricinus: analysis of proteolytic activity and its regulation

Talacko, Pavel January 2012 (has links)
The hard tick Ixodes ricinus is an important blood-feeding parasite that transmits tick- borne diseases, such as tick-borne encephalitis and Lyme disease. Ticks employ a battery of proteolytic enzymes, including cathepsins, to digest their bloodmeal. These proteins are potential targets for the development of anti-tick vaccines. This work is focused on cathepsin L from I. ricinus (IrCL), namely its isoenzymes IrCL1 and IrCL3. IrCL1 was expressed in Pichia pastoris and chromatographically purified. Its substrate specifity was determined by the cleavage of (a) peptide fluorogenic substrates and (b) protein substrates analyzed by mass spectrometry. The proteolytic activity of IrCL1 was modulated by its interaction with glycosaminoglycans, which affected the pH optimum value. Futhermore, a proteolytically active mutant of IrCL1 with reduced number of N-glycosylation sites was prepared; this form will be used for crystallization experiments. IrCL3 was expressed in Escherichia coli, refolded and activated to its active form. The proteolytic activity of IrCL3 is in many ascpects similar to that of IrCL1, including substrate specifity, acidic pH optimum and activity modulation by glycosaminoglycans. Key words: cysteine proteases, cathepsin L, hard tick I. ricinus, substrate specifity, proteolytic activity...
12

Charakterizace rekombinantních cathepsinů B ptačí schistosomy Trichobilharzia regenti / Characterisation of recombinant cathepsins B of the bird schistosome Trichobilharzia regenti

Dvořáková, Hana January 2011 (has links)
This study focuses on the recombinant cysteine peptidases - cathepsin B originating in the bird schistosome Trichobilharzia regenti that is unique across the whole family for its ability to migrate through the nerve tissue to the final localization. For invasion, migration, degradation of nutritional proteins and/or evasion of host immune responses, schistosome employs peptidases. This study follows the research done by researchers of Department of parasitology, Faculty of Natural Sciences, Charles University. The main goal of this study was to deepen the characteristics of recombinant cathepsins B originating in T. regenti. In T. regenti, two cysteine peptidases - cathepsins B1 (TrCB1) and B2 (TrCB2) - have been previously characterized. TrCB1 is located in the gut of schistosomula and involved in digestion. TrCB2 occurs in post-acetabular penetration glands of cercariae and probably facilitates penetration. The recombinant pro-cathepsin B (isoforms TrCB1.1, TrCB1.4 and also TrCB2) were expressed in Pichia pastoris yeast system. An attempt was made to produce in P. pastoris the recombinant isoform TrCB1.6, in which the active site cysteine is substituted by glycine. While TrCB2 underwent self-processing in the expression medium, TrCB1.1 and TrC1.4 zymogens were effectively activated only after the...
13

Perorální infekce ptáků a savců neuropatogenní motolicí Trichobilharzia regenti / Peroral infections of birds and mammals with the neuropathogenic fluke Trichobilharzia regenti

Pech, Václav January 2013 (has links)
Migration within the body of an infected host is one of the most important parts in the life cycle of flukes, including schistosomes. Migration of avian and mammalian visceral schistosomes has been a quite well studied topic (Haas a Haeberlein, 2009), which became more attractive after the discovery of T. regenti, an avian schistosome which is able to migrate through the nervous tissues of infected birds and mammals as well. Migration of T. regenti and T. szidati schistosomula within the definitive (duck) and the accidental (mouse) hosts is the main topic of the diploma thesis. This work continues with the research of K. Blažová (Faculty of Science, Charles University in Prague) who studied migration of T. regenti within the definitive hosts infected perorally with cercariae or hepatopancreases of the infected intermediate snail, Radix lagotis (unpblished). She proved that T. regenti schistosomula are able to use the central nervous system for migration to the nasal mucosa of infected birds. In our work, we focused on the early phase of migration within the perorally infected birds and mice. Invasion of esophagus by T. regenti cercariae in vitro is not conditioned by secretion of glandular products, including cathepsin B2 of T. regenti (TrCB2). Activity of TrCB2 against mucins, the main components...
14

Vlastnosti exkrečně-sekrečních proteinů motolice Fascioloides magna. / Characterization of excretory-secretory proteins of liver fluke Fascioloides magna.

Beránková, Kateřina January 2011 (has links)
Fascioloides magna (the giant liver fluke) originated from North America, is known in the Czech Republic since 1930s. This pathogenic fluke invades mostly cervids, but livestock too. Excretory-secretory products (ES products) contain number of esential biomolecules which are produced by excretory and secretory system of the fluke. These molecules play key role in many biological process during the life cycle not only of fascioloid flukes (e.g. migration in the host tissues, immune evasion and digestion). Due to their antigenic properties they could be also used in immunodiagnostics. Excretory-secretory proteins from adult Fascioloides magna and comparative related species Fasciola hepatica were purified and separated by the basic biochemical methods (1D, 2D electrophoresis, ion-exchange chromatography) and their activity was confirmed by specific (fluorogenic peptide) and nonspecific (gelatine) substrates. By using the mass spectrometry methods (MALDI TOF/TOF), the most abundant peptidolytically active proteins from ES products of F. magna were identified as cathepsin L (FmCL). Recombinant analog of FmCL was expressed in Pichia pastoris expression system. The peptidolytic activity was again confirmed using the synthetic fluorogenic substrates; the specifity of recombinant FmCL active site was...

Page generated in 0.0586 seconds