• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1885
  • 395
  • 1
  • 1
  • 1
  • Tagged with
  • 2284
  • 1667
  • 581
  • 545
  • 348
  • 317
  • 315
  • 309
  • 227
  • 209
  • 185
  • 178
  • 138
  • 103
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
761

Comparison of experimentally and theoretically determined oxidation and photochemical transformation rates of some organohalogens to promote prediction of persistence

Moreira Bastos, Patricia January 2009 (has links)
The diversity of choices we have to make everyday influence our environment and ourselves in more ways than most of us realise. Anthropogenic substances, such as flame retardants, date back as early as 450 BC when the Egyptians used alum to reduce flammability. The increasing demand for new articles has led to an increased production of chemical substances, for which many are commercially produced without complete knowledge on properties such as persistence, bioaccumulation and toxicology (PBT). Commercial compounds may be properly tested and denominated as “safe” regarding PBT properties, but their degradation products and/or metabolites may cause environmental impact. The availability of uniform and accurate data for prediction of persistence is of key importance for the understanding of chemical fate. A method to determine the susceptibility of chemicals to undergo oxidation in water has been developed and applied on several organohalogens, including PBDEs and OH-PBDEs. The method was used to determine reaction rates and the group of OH-PBDEs were subsequently subjected to photolysis by use of UV-light. Hence, susceptibility to undergo both oxidation and photolysis for the OH-PBDEs were investigated and compared to previously reported degradation rates on PBDEs. As a final step in promoting the prediction of persistence, Quantitative structure-property relationship (QSPR) models were performed on a set of compounds which had undergone photolytic degradation under similar conditions. The QSPRs were used as a preliminary step in predicting photolysis half-lives for chemical substances and to determine which physicochemical descriptors are of greatest importance thereof. This thesis presents the possibility of performing and assessing oxidation transformations on compounds of low and high water solubility, photolysis transformations in various media and using obtained data to predict behaviour via QSPR models, to promote predictions of persistence.
762

Colloidal synthesis of metal oxide nanocrystals and thin films

Söderlind, Fredrik January 2008 (has links)
A main driving force behind the recent years’ immense interest in nanoscience and nanotechnology is the possibility of achieving new material properties and functionalities within, e.g., material physics, biomedicine, sensor technology, chemical catalysis, energy storing systems, and so on. New (theoretical) possibilities represent, in turn, a challenging task for chemists and physicists. An important feature of the present nanoscience surge is its strongly interdisciplinary character, which is reflected in the present work. In this thesis, nanocrystals and thin films of magnetic and ferroelectric metal oxides, e.g. RE2O3 (RE = Y, Gd, Dy), GdFeO3, Gd3Fe5O12, Na0.5K0.5NbO3, have been prepared by colloidal and sol-gel methods. The sizes of the nanocrystals were in the range 3-15 nm and different carboxylic acids, e.g. oleic or citric acid, were chemisorbed onto the surface of the nanoparticles. From FT-IR measurements it is concluded that the bonding to the surface takes place via the carboxylate group in a bidentate or bridging fashion, with some preference for the latter coordination mode. The magnetic properties of nanocrystalline Gd2O3 and GdFeO3 were measured, both with respect to magnetic resonance relaxivity and magnetic susceptibility. Both types of materials exhibit promising relaxivity properties, and may have the potential for use as positive contrast enhancing agents in magnetic resonance imaging (MRI). The nanocrystalline samples were also characterised by transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and quantum chemical calculations. Thin films of Na0.5K0.5NbO3, GdFeO3 and Gd3Fe5O12 were prepared by sol-gel methods and characterized by x-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). Under appropriate synthesis conditions, rather pure phase materials could be obtained with grain sizes ranging from 50 to 300 nm. Magnetic measurements in the temperature range 2-350 K indicated that the magnetization of the perovskite phase GdFeO3 can be described as the sum of two contributing terms. One term (mainly) due to the spontaneous magnetic ordering of the iron containing sublattice, and the other a susceptibility term, attributable to the paramagnetic gadolinium sublattice. The two terms yield the relationship M(T)=M0(T)+χ(T)*H for the magnetization. The garnet phase Gd3Fe5O12 is ferrimagnetic and showed a compensation temperature Tcomp ≈ 295 K.
763

Development of New Synthetic Routes to Organoboronates by Catalytic Allylic Substitution and C-H bond Functionalization

Olsson, Vilhelm January 2009 (has links)
This thesis describes the development of new catalytic methods for the synthesis and application of organometallic reagents, mainly focusing on allylboronic acid derivatives. Thus, palladium pincer-complex catalysis has been applied for extending the scope of palladiumcatalyzed borylation reactions in the synthesis of regio- and stereodefined functionalized allylboronic acid derivatives. These novel allylboronic acids were also employed as substrates in palladium catalyzed regioselective coupling reactions with iodobenzenes. We have also developed a new one-pot sequence based on preparation of allyl- and vinylboronates via catalytic carbon-hydrogen bond activation/borylation reactions. The synthetic scope of the reaction as well as mechanistic studies on the borylation process are presented. Finally, the synthesis of new chiral palladium pincer-complexes is described. These species were employed as catalysts in asymmetric electrophilic allyation of imines.
764

Studies on warfarin treatment with emphasis on inter-individual variations and drug monitoring

Osman, Abdimajid January 2007 (has links)
Waran används sedan 60 år som blodförtunnande läkemedel för att förebygga eller förhindra progress av blodproppssjukdom. I Sverige behandlas årligen cirka 1 % av befolkningen med waran. I Östergötland uppskattas antal waranpatienter till cirka 3000. Waran hämmar enzymet VKORC1 som ansvarar för vitamin K omsättningen i kroppen. Vitamin K behövs som kofaktor för flera koagulationsfaktorer. Behandling med waran är förenad med en svår balansgång och kräver en noggrann dosering. Stora skillnader i dosbehov mellan olika individer, beroende på ärftliga och miljöfaktorer, gör waran till ett svårhanterligt läkemedel. För låg dos medför otillräcklig effekt och därmed risk för minskat skydd mot blodproppssjukdom. För hög dos leder till allvarliga blödningskomplikationer. Uppskattningsvis 1 – 3 % livshotande blödningsfall registreras årligen efter waranbehandling. Därför måste behandlingen kontrolleras noga med analys av protrombinkomplex (PK) och dosjusteringar göras med ledning av resultaten. Två olika metoder finns att använda för mätning av PK. I Norden och i Japan används Owrens metod (utvecklat i Norge under 40- och 50-talet av Paul Owren). I de flesta andra länder används Quickmetoden (utvecklat i USA under 30-talet av Armand Quick). Den senare metoden är förenad med stora variationer mellan olika analyslaboratorier. I Norden, däremot, där Owrens metod används finns det ofta bra överensstämmelse mellan olika laboratorier i PK-resultat. Beroende på vilken PK-metod som används, kan samma patient få olika warandoser vilket ökar risker för under- eller överbehandling. Vi har i samarbete med flera sjukhus och antikoagulationsmottagningar (AK-mottagningar) i sydöstra Sverige studerat dels mekanismerna bakom skillnader i warandos mellan olika patienter, och dels tittat varför de olika PK-metoder skiljer sig så mycket som de gör. I studien har vi identifierat genetiska varianter av enzymet VKORC1. Av de undersökta patienter som gick på waran under längre tid, har vi identifierat en grupp som markant skiljde sig från de övriga. Denna grupp hade warandoser som var betydligt lägre än de övriga. När vi kartlade deras arvsmassa, fann vi att lågdospatienterna hade genvarianten VKORC1*2. Dessutom hade patienter med denna variant svårigheter att få stabila PK-värden. De gjorde också fler besök på AK-mottagningar än andra patienter. Vi har därför konstaterat att en del av de problem som är förenade med waranbehnadlingen kan förklaras av VKORC1*2 varianten. Vetskap om denna variant skulle troligen underlätta behandlingen framför allt under inledningsfasen då patienter med VKORC1*2 riskerar blödningar på grund av överdosering. Vi har identifierat att provförspädning enligt Owrens metod är nödvändig för harmonisering av PK-resultatet mellan olika länder. Quickmetoden använder inte förspädning av patientprov till skillnad från Owrens metod. När vi modifierade en Quickmetod genom att förspäda prover enligt Owrens metod noterade vi en bra överensstämmelse mellan de två olika metoderna. Däremot var resultatet sämre utan provförspädning. Vi anser att Quickmetoder kan uppnå lika bra resultat som Owrens metod om prover förspäds som i Owrens metod. Det skulle gynna patienter som reser mellan olika regioner eller länder och leda till en bättre övervakning av waranbehandling internationellt. I studien har dessutom en metod för mätning av waran i blodet utvecklats. Metoden som är den enda i sitt slag i Norden ger möjlighet att studera hur läkemedlet beter sig i kroppen. Vi har med denna metod kunnat upptäcka patienter som har onormala nedbrytningar av waran. / Warfarin was introduced more than 60 years ago and is used worldwide for the prophylaxis of arterial and venous thromboembolism in primary and secondary prevention. The drug is orally administered as a racemic mixture of (R)- and (S)-enantiomers. The (S)-form is mainly responsible for the anticoagulant effect and is metabolised by CYP2C9 enzyme in the liver microsomes. Warfarin exerts its pharmacological action by inhibiting the key enzyme (VKORC1) that regenerates vitamin K from an oxidised state to a reduced form. The latter is a cofactor for the post-translational modification of a number of proteins including coagulation factors II, VII, IX and X. The vitamin K-dependent modification provides these factors with the calcium-binding ability they require for the interaction with cell membranes of their target cells such as platelets. Warfarin is monitored by measuring prothrombin time (PT) expressed as INR. Two main methods exist for PT analysis. The Owren method is used mainly in the Nordic and Baltic countries, in Japan, whereas the Quick method is employed in most other countries. Warfarin management is associated with some complications. Unlike many other drugs the dose for a given patient cannot be estimated beforehand, dose-response relationship is not predictable, and the prevention of thrombosis must be balanced against the risk of bleeding. Furthermore, the different PT methods used to monitor the drug are sometimes not in agreement and show significant discrepancies in results. In an attempt to clarify the mechanisms influencing the inter-individual variations in warfarin therapy and to detect the factors that contribute to differences between PT methods, studies were conducted in collaboration with hospitals and anticoagulation clinics in the south-eastern region of Sweden. First, a stereo-specific HPLC method for measurement of warfarin enantiomers was developed and validated. With this method, the levels of plasma warfarin following its oral administration can be studied and evaluated. Abnormal clearance in some patients can be detected, and patient compliance can be verified. Furthermore, differing ratios of (S)- and (R)-isomers can be identified. The impact of common VKORC1 polymorphisms on warfarin therapy was investigated. This study has shown that the VKORC1*2 haplotype is an important genetic determinant for warfarin dosage and is associated with difficulties in attaining and retaining therapeutic PT-INR. Further, significant differences in warfarin S/R-ratio was detected between patients with VKORC1*2 and VKORC1*3 or VKORC1*4 variants. This difference was not coupled with CYP2C9 genotype. The effects of predilution of patient plasma samples, sources of thromboplastin and deficient plasma on between PT methods agreement were studied. This study has revealed that sample predilution according to the Owren method is to be preferred for the harmonisation of PT results. Undiluted samples, in contrast, according to the Quick method have shown reduced correlation between two different thromboplastin reagents. Sources of thromboplastin and deficient plasma were only of minor importance.
765

Formation mechanism of anionic-surfactant-templated mesoporous silica (AMS)

Gao, Chuanbo January 2009 (has links)
This dissertation is focused on synthesis, characterization and formation mechanism of anionic-surfactant-templated mesoporous silica (AMS). Structural control mechanisms of AMS are investigated. First, different ionization degree of anionic surfactant affected by the acidity or alkalinity of the synthesis system gives rise to different charging density of micelles and therefore determines the organic/inorganic interface curvature, producing mesophases from cage-type to cylindrical, bicontinuous and lamellar. Second, mesocage/mesocage electrostatic repulsive interaction affects the formation of cage-type mesostructure, which is derived from a full-scaled synthesis-field diagram of AMS. The mesocage/mesocage interaction changes with charge density of mesocages and gives rise to their different packing manners. Third, the structural properties of AMS materials could be tuned by molecular features of surfactant and co-structure-directing agent (CSDA). The pore size of AMS is found to be controlled by alkyl chain length, ionization degree of surfactant and the CSDA/surfactant ratio. Alkyl chain length of surfactant determines size of micelles and thus mesopores. Larger ionization degrees of anionic surfactant give rise to smaller pore sizes due to thermodynamic coiling of alkyl chains of surfactant. The hydrophobic interactions between the pendant organic groups of CSDA on the silica wall and the hydrophobic core of the micelles drive a contraction of the mesopores. A mesoporous silica with novel bicontinuous cubic Pn-3m structure has been prepared using a diprotic anionic surfactant. 3d-reconstruction of the structure shows that it is bicontinuous composed of an enantiomeric pair of 3d mesoporous networks that are interwoven with each other, divided by a D surface. Inverse replication suggests the possible presence of ordered complimentary micropores in the material.
766

Mimicking Nature – Synthesis and Characterisation of Manganese Complexes of Relevance to Artificial Photosynthesis

Berggren, Gustav January 2009 (has links)
The development of efficient catalyst for water oxidation is of paramount importance to artificial photosynthesis, but before this can be achieved a deeper understanding of this reaction is essential. In nature this reaction occurs in a tetranuclear Mn-cluster which serves as the work-horse of oxygenic photosynthesis. This thesis summarises my efforts at developing molecular systems capable of mimicking this complex employing a biomimetic approach. Three different approaches towards this goal are described here-in. The first section describes a screening study, in which a number of manganese complexes were tested to see whether or not they were capable of catalysing the formation of dioxygen when treated with different oxidants (Papers I). For those reactions in which dioxygen formation was observed the reactions were repeated in labelled water and the incorporation of labelled O-atoms was studied by mass spectrometry. This allowed us to determine to what extent water was the source of the evolved dioxygen (Papers II-III). In Chapter three a reported catalyst and a derivative thereof is studied in depth. The influence of changes to the ligand on the oxygen–oxygen bond forming reaction could unfortunately not be reliably addressed, because of the instability of the complexes under “catalytic” conditions. Nevertheless, the study allowed us to revise the “carboxylate shift”-mechanism suggested in the literature (Papers IV-V). Chapter four describes the continuation of my work on ligands featuring the carboxylate ligand motif first introduced in Chapter three. In this study ligands containing multiple binding pockets were designed and synthesised (Paper VI). A better understanding of the mechanism in the natural water oxidising enzyme will facilitate the design of biomimetic complexes, this is discussed in Chapter five. In this work model complexes (Paper VII) are used to study the mechanism by which natures own water oxidising catalyst performs this reaction.
767

3D Electron crystallography : Real space reconstruction and reciprocal space tomography

Zhang, Daliang January 2010 (has links)
Electron crystallography is an important technique for studying micro- and nano-sized materials. It has two important advantages over X-ray crystallography for structural studies: 1) crystals millions of times smaller than those needed for X-ray diffraction can be studied; 2) it is possible to; focus the electrons to form an image. The local atomic arrangement can be seen directly by high-resolution transmission electron microscopy (HRTEM). The crystallographic structure factor phases, which are lost in recording diffraction patterns, are present in HRTEM images and can be determined experimentally. The main disadvantages of electron crystallography compared to X-ray diffraction are that the data are difficult to collect, often incomplete and suffer from dynamic scattering. New methods need to be developed to overcome these problems. In this work, structure determination of several unique and complex porous materials including zeolites and mesoporous silica is demonstrated. None of the structures of these materials could be solved by X-ray crystallography. New techniques are also developed in order to overcome the disadvantages of electron crystallography. The new techniques include a digital sampling method for collecting precession electron diffraction data and a rotation method for automatic collection of complete 3D electron diffraction data. A number of practical issues concerning data collection and data processing are described and the data quality is analysed. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted.
768

Application of Artificial Gel Antibodies for the Detection and Quantification of Proteins in Biological Fluids

Ghasemzadeh, Nasim January 2010 (has links)
The molecular-imprinting method has previously been used for the synthesis of artificial gel antibodies, highly selective for various proteins. In present study, we have synthesized artificial gel antibodies against haemoglobin, albumin and different forms of growth hormone with the aim to develop a simple and rapid procedure to measure the concentration of these protein biomarkers in samples of clinical interest.  A spectrophotometric method was developed to design a standard curve in the form of a straight line, whereby the true absorption (not the recorded “apparent” absorption) was plotted against a known protein concentration. The procedure, applied to quantitative analysis of albumin in human plasma and cerebrospinal fluid (CSF) from patients with ALS, indicated that  the concentration of this protein was significantly enhanced in CSF from patients with amyotrophic lateral sclerosis (ALS), compared to control samples. A low level of albumin was observed in plasma from ALS patients compared to controls. Additionally, free zone electrophoresis was employed to detect human growth hormone (GH) activity in hormone preparations purified from human pituitaries. We have successfully synthesized antibodies capable of discriminating between dimeric and monomeric GH in samples of clinical origin. To quantify these proteins a calibration curve has been designed, i.e. a plot of the electrophoretic mobility of the complex GH/gel antibody against the protein concentration in the sample, for instance serum or CSF. This method was also employed for qualitative and quantitative determinations of Somatropin, a non-glycosylated GH and glycosylated-GH in a body liquid. Our results indicate that by this technique one can “fish out” with high accuracy various proteins from both body fluids containing a great number of other proteins. It might well apply also to biomarker proteins for other diseases.
769

Ring-opening polymerization from cellulose for biocomposite applications

Lönnberg, Hanna January 2009 (has links)
There is an emerging interest in the development of sustainable materials with high performance. Cellulose is promising in this regard as it is a renewablere source with high specific properties, which can be utilized as strong reinforcements in novel biocomposites. However, to fully exploit the potential ofcellulose, its inherent hydrophilic character has to be modified in order toimprove the compatibility and interfacial adhesion with the more hydrophobicpolymer matrices commonly used in composites.In this study, the grafting of poly(ε-caprolactone) (PCL) and poly(L-lactide)(PLLA) from cellulose surfaces, via ring-opening polymerization (ROP) of ε-caprolactone and L-lactide, was investigated. Both macroscopic and nano-sizedcellulose were explored, such as filter paper, microfibrillated cellulose (MFC),MFC-films, and regenerated cellulose spheres. It was found that thehydrophobicity of the cellulose surfaces increased with longer graft lengths, andthat polymer grafting rendered a smoother surface morphology.To improve the grafting efficiency in the ROP from filter paper, both covalent(bis(methylol)propionic acid, bis-MPA) and physical pretreatment (xyloglucanbisMPA)were explored. The highest grafting efficiency was obtained with ROPfrom the bis-MPA modified filter papers, which significantly increased amountof polymer on the surface, i.e. the thickness of the grafted polymer layer.MFC was grafted with PCL to different molecular weights. The dispersability innon-polar solvent was obviously improved for the PCL grafted MFC, incomparison to neat MFC, and the stability of the MFC suspensions was better maintained with longer grafts. PCL based biocomposites were prepared from neat MFC and PCL grafted MFCwith different graft lengths. The polymer grafting improved the mechanical properties of the composites, and the best reinforcing effect was obtained when PCL grafted MFC with the longest grafts were used as reinforcement.A bilayer laminate consisting of PCL and MFC-films grafted with different PCL graft lengths displayed a gradual increase in the interfacial adhesion with increasing graft length.The effect of grafting on the adhesion was also investigated via colloidal probeatomic force microscopy at different temperatures and time in contact. A significant improvement in the adhesion was observed after polymer grafting. / QC 20100730
770

Density Functional Response Theory with Applications to Electron and Nuclear Magnetic Resonance

Oprea, Corneliu I. January 2007 (has links)
This thesis presents quantum chemical calculations, applications of the response function formalism recently implemented within the framework of density functional theory by our research group. The purpose of the calculations is to assess the performance of this perturbative approach to determining heavy atom effects on magnetic resonance parameters. Relativistic corrections can be generated by spin-orbit interactions or by scalar relativistic effects due to high velocity electrons in the atomic core region of heavy atoms. In this work, the evaluation of nuclear magnetic resonance parameters is considered, the nuclear shielding tensor and the indirect nuclear spin-spin coupling tensor. For series of homologous compounds, it is found that both types of corrections to these parameters are increasing in size upon substitution of a constituent atom by a heavier element, but that their relative importance is system dependent. The obtained results are compatible with the ones provided by electron correlated ab initio methods, and a qualitative agreement with experimentally determined parameters is overall achieved. The methodology presented in this thesis aims to be a practical approach which can be applied in the study of molecular properties of large systems. This thesis also addresses the calculation of hyperfine coupling constants, and evaluates a novel approach to the treatment of spin-polarization in spin restricted calculations without the spin contamination associated with spin unrestricted calculations / QC 20100811

Page generated in 0.0438 seconds