• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Analysis of Techniques for Multiple-Instance Learning in the Presence of Balanced and Skewed Class Distributions

Wang, Xiaoguang January 2015 (has links)
With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, the Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Existing knowledge discovery and data analyzing techniques have shown great success in many real-world applications such as applying Automatic Target Recognition (ATR) methods to detect targets of interest in imagery, drug activity prediction, computer vision recognition, and so on. Among these techniques, Multiple-Instance (MI) learning is different from standard classification since it uses a set of bags containing many instances as input. The instances in each bag are not labeled | instead the bags themselves are labeled. In this area many researchers have accomplished a lot of work and made a lot of progress. However, there still exist some areas which are not covered. In this thesis, we focus on two topics of MI learning: (1) Investigating the relationship between MI learning and other multiple pattern learning methods, which include multi-view learning, data fusion method and multi-kernel SVM. (2) Dealing with the class imbalance problem of MI learning. In the first topic, three different learning frameworks will be presented for general MI learning. The first uses multiple view approaches to deal with MI problem, the second is a data fusion framework, and the third framework, which is an extension of the first framework, uses multiple-kernel SVM. Experimental results show that the approaches presented work well on solving MI problem. The second topic is concerned with the imbalanced MI problem. Here we investigate the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. For this problem, we propose three solution frameworks: a data re-sampling framework, a cost-sensitive boosting framework and an adaptive instance-weighted boosting SVM (with the name IB_SVM) for MI learning. Experimental results - on both benchmark datasets and application datasets - show that the proposed frameworks are proved to be effective solutions for the imbalanced problem of MI learning.
2

Modeling the variability of EEG/MEG data through statistical machine learning

Zaremba, Wojciech 06 September 2012 (has links) (PDF)
Brain neural activity generates electrical discharges, which manifest as electrical and magnetic potentials around the scalp. Those potentials can be registered with magnetoencephalography (MEG) and electroencephalography (EEG) devices. Data acquired by M/EEG is extremely difficult to work with due to the inherent complexity of underlying brain processes and low signal-to-noise ratio (SNR). Machine learning techniques have to be employed in order to reveal the underlying structure of the signal and to understand the brain state. This thesis explores a diverse range of machine learning techniques which model the structure of M/EEG data in order to decode the mental state. It focuses on measuring a subject's variability and on modeling intrasubject variability. We propose to measure subject variability with a spectral clustering setup. Further, we extend this approach to a unified classification framework based on Laplacian regularized support vector machine (SVM). We solve the issue of intrasubject variability by employing a model with latent variables (based on a latent SVM). Latent variables describe transformations that map samples into a comparable state. We focus mainly on intrasubject experiments to model temporal misalignment.

Page generated in 0.043 seconds