• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations into the biocatalytic potential of modular polyketide synthase ketoreductases

Piasecki, Shawn Kristen 04 October 2013 (has links)
The production of new drugs as potential pharmaceutical targets is arguably one of the most important avenues of medicine, as existing diseases not only require treatment, but it is also certain that new diseases will appear in the future which will need treatment. Indeed, existing medicines such as antibiotics and immunosuppressants maintain their current activities in their respective realms, yet the molecular and stereochemical complexity of these compounds cause a burden on organic synthetic chemists that may prohibit the high yields required to manufacture a drug. The enzyme systems that naturally manufacture these compounds are incredibly efficient in doing so, and also do not use environmentally harmful solvents, chiral auxiliaries, or metals that are utilized in the current syntheses of these compounds; therefore utilizing these enzymes' machinery for the biocatalysis of new medicinally-relevant compounds, as researchers have in the past, is undeniably a rewarding endeavor. In order to harness these systems' biocatalytic potential, we must understand the processes which they operate. This work focuses on ketoreductase domains, since they are responsible for setting most of the stereocenters found within these complex secondary metabolites. We have supplied a library of substrates to multiple ketoreductases to test their limits of stereospecificity and found that, for the most part, they maintain their natural product stereospecificity seen in nature. We were even able to convert a previously nonstereospecific ketoreductase to a stereospecific catalyst. We have also developed a new technique to follow ketoreductase catalysis in real-time, which can also differentiate between which diastereomeric product is being produced. Finally, we have elucidated the structure of a ketoreductase that reduces non-canonically at the [alpha]- and [beta]- position, and functionally characterized its activities on shortened substrate analogs. With the knowledge gained from this dissertation we hope that the use of ketoreductases as biocatalysts in the biosynthesis of new natural product-based medicines is a much nearer reality than before. / text
2

Isolation and Characterization of Two Enzyme Proteins Catalyzing Oxido-Reduction at C-9 and C-15 of Prostaglandins from Swine Kidney

Chang, David Guey-Bin 12 1900 (has links)
Two swine kidney proteins (PI 4.8 and 5.8) both possessing 9-prostaglandin ketoreductase (9-PGKR) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) activities were purified to homogeneity. Purification increased specific activities in parallel. Molecular weight, subunit size, amino acid composition, coenzyme and substrate specificity and antigenicity of both proteins were similar. Gel filtration and SDS-polyacrylamide gel electrophoresis molecular weights of 29,500 and 29,000, respectively, suggested a single subunit. Although a variety of prostaglandins served as substrates, the best for 15-PGDH was PGB, while PGA_1-GSH showed the lowest Km for 9-PGKR. Rabbit antibody against the PI 5.8 protein crossreacted with both purified renal enzymes and with extracts from rat spleen, lung, heart, aorta, and liver.
3

Étude multidisciplinaire des aspects clés de la biosynthèse des polykétides par des polykétide synthases modulaires / Multidisciplinary studies of key aspects of polyketides biosynthesis by modular polyketide synthases

Annaval, Thibault 17 December 2015 (has links)
Les polykétides sont des composés naturels. Ces composés possèdent des rôles thérapeutiques variés tels que antifongiques, antibiotiques, anticancéreux, immunosuppresseurs ou encore anticholestérolémiques. Par conséquent, la recherche de nouvelles structures possédant des bioactivités diverses se révèlent être intéressante. Une stratégie prometteuse pour créer des nouveaux polykétides est l’ingénierie génétique des enzymes synthétisant ces molécules, les polykétide synthases modulaires (PKS), une approche désignée sous le terme de « biologie synthétique ». Pour ce faire, il faut comprendre de façon détaillée le fonctionnement de ces systèmes multienzymatiques. Plusieurs points restent à éclaircir, dont : i) le contrôle de la stéréochimie du polykétide ; et ii) l’interaction des sous-unités composant la PKS. Lors de ma thèse, j’ai identifié deux kétoréductases (KR) qui, introduites dans un contexte modulaire intrinsèquement non-épimérisant, sont capables d’épimériser le méthyle en Cα de façon efficace. Cependant, la modification de la stéréochimie du polykétide ne dépend pas exclusivement des propriétés intrinsèques de la KR mais aussi du contexte modulaire. J’ai également contribué à la réalisation d’un second projet, pour lequel notre équipe a mis en évidence une nouvelle classe de domaine de docking de PKS de type trans-AT présentant une nouvelle topologie. L’un des DD étudié est une protéine intrinsèquement désordonnée dont le repliement est induit par son partenaire. Nous avons caractérisé l’interface complète entre deux sous-unités de PKS de type trans-AT, révélant une chambre de réaction protégée dans laquelle les chaînes de polykétide peuvent croître / Polyketides are natural products which exhibit a variety of therapeutic activities, including anti-fungal, antibiotic, anticancer, immunosuppressant and anti-cholesterolemic properties. Given their medical and economic importance, there is significant interest in identifying new structures with new biological activities. A promising strategy to create such analogues is to genetically engineer the enzymes responsible for synthesizing these molecules, the modular polyketide synthases (PKSs), an approach referred to as ‘synthetic biology’. However, in order to increase the efficacy of this approach, we must understand in detail how the PKS multienzymes work. A number of issues remain to be clarified, including: i) polyketide stereocontrol, ii) the interaction of the component subunits PKS. During my thesis, I identified two ketoreductase (KR) domains which when introduced into an intrinsically non-epimerizing modular context, were able to efficiently epimerise at the Cα of a model polyketide. I also showed that the modular context in which the KR functions has an influence on the ultimate stereochemical outcome. I also made essential contributions to a second project, in which the group identified a novel family of docking domains (DD) in the trans-AT type of PKS which present a novel topology. One of the two model DDs studied is an intrinsically disordered protein whose folding is induced by its partner. Finally, we were able to visualize a complete intersubunit interface within a trans-AT PKS, revealing a protected reaction center in which polyketide chains can grow.
4

Fenhexamid : mode d’action et résistance chez le complexe d’espèces Botrytis SPP., responsable de la pourriture grise de la vigne / Fenhexamid : mode of action and resistance in the complex of species Botrytis spp., responsible for grey mould disease

Billard, Alexis 28 January 2011 (has links)
La lutte chimique est la principale méthode utilisée pour contrôler les maladies causées par les champignons phytopathogènes. Dans certains cas, desphénomènes de résistance envers les fongicides se développent au sein despopulations, altérant parfois l’efficacité des molécules. La compréhension du moded’action des fongicides et des mécanismes de résistance sous-jacents participe à élaboreret à adapter des stratégies de management anti résistance ; et ainsi permettre depérenniser la durée de vie des molécules. Le fenhexamid est un fongicide récent (BayerCropScience, 2000), avec un mode d’action unique. Il est le seul fongicide commercialisébloquant l’étape de C4-déméthylation de la biosynthèse de l’ergostérol. Plusieurs typesde résistance (naturelle et acquises) ont été détectées dans les vignobles européens chez lecomplexe d’espèces Botrytis spp. responsable de la pourriture grise de la vigne. Lestravaux développés durant la thèse s’inscrivent dans l’objectif de la caractérisation dumode d’action et de l’élucidation des mécanismes de résistance. Le premier axe s’estattaché à la caractérisation fonctionnelle de deux gènes impliqués dans la C-4déméthylation de la biosynthèse de l’ergostérol : le gène erg27 codant la 3-céto réductase,cible du fenhexamid, et le gène erg28 codant une protéine qui interagirait en partie avecla 3-céto réductase. Concernant la résistance au fenhexamid, il a été démontré que, pargénétique inverse, les mutations détectées dans le gène erg27 de différents types d'isolatsrésistants issus du vignoble (phénotypes de résistance HydR3- et HydR3+) conféraient larésistance. Par ailleurs, une analyse de fitness du phénotype le plus préoccupant(phénotype HydR3+) a été réalisée en conditions contrôlées sur des souches isogéniquesartificielles afin d’apporter une réponse sur la persistance possible de ces souches auvignoble. Une méthode fine de quantification moléculaire de ces mêmes isolats aégalement été mise au point pour faciliter le suivi de leur évolution et de la persistancedes populations naturelles à l’échelle des vignobles. Cette nouvelle méthode, nomméeASPPAA PCR, exploite le polymorphisme nucléotidique du gène erg27, à l’origine de larésistance. Enfin, la résistance naturelle au fenhexamid de l’espèce apparentée à Botrytiscinerea, appelée Botrytis pseudocinerea a été élucidée. La résistance au fongicide de cetteespèce a été expliquée par la combinaison de modifications de cible (mécanismeminoritaire) et d’une dégradation du fongicide par un cytochrome P450 nomméCyp68.4 (mécanisme majeur). Il s’agit de la première identification et caractérisationgénétique d’un mécanisme de résistance à un fongicide conférée par un processus dedétoxification chez un champignon phytopathogène. / Chemical control is the main method used to control diseases caused byphytopathogenic fungi. In some cases, the resistance phenomena towardfungicides occur within fungal populations, which might alter practicalefficiency of molecules. Understanding modes of action of fungicides andunderlying resistance mechanisms participate to the development and adaptationof management strategies against resistance, and thus help to sustain the life ofmolecules. Fenhexamid is a recent fungicide (Bayer CropScience, 2000), with aparticular mode of action. It is the only fungicide marketed blocking the C4-demethylation step of ergosterol biosynthesis. Several types of resistance (naturaland acquired) were detected in European vineyards in the Botrytis spp speciescomplex, causing grey mold disease. This work focused on the characterization ofthe mode of action and the elucidation of resistance mechanisms. The first aspectinvestigated the functional characterization of two genes involved in the C4-demethylation of ergosterol biosynthesis. The erg27 gene potentially encoding the3-keto reductase which is the fenhexamid target and the erg28 gene encoding aprotein that interact in part with the 3-ketoreductase. Concerning fenhexamidresistance, we shown by reverse genetics that mutations detected in the erg27 genefrom different resistant isolates from the vineyards (phenotypes HydR3- andHydR3+) confer resistance. Furthermore, a fitness analysis under controlledconditions on the most worrying resistant phenotype (HydR3+) was performed onisogenic artificial strains in order to predict the possible persistence of these strainsin vineyards. A fine molecular method to quantify these isolates was developed tofacilitate the follow-up of evolution and persistence of resistant populations in thevineyard. This new method, named ASPPAA PCR is based on the nucleotidepolymorphism of the erg27 gene, responsible for fenhexamid resistance. Finally,the natural resistance to fenhexamid of the related species to Botrytis cinerea, B.pseudocinerea, was elucidated. Fungicide resistance of this species is explained bythe combination of target site modifications (minor mechanism) and fungicidedegradation mediated by a cytochrome P450 named Cyp68.4 (major mechanism).This is the first characterization of a genetic resistance mechanism to a fungicideconferred by detoxification in a phytopathogenic fungus.
5

In vitro polyketide biocatalysis : triketide building-blocks and enzymology

Harper, Andrew David 08 October 2013 (has links)
Polyketide products are useful compounds to research and industry but can be difficult to access due to their richness in stereogenic centers. Type I polyketide synthases offer unique engineering opportunities to access natural stereocontrol and resultant complex compounds. The development of a controlled in vitro platform based around type I polyketide synthases is described. It has been used to produce a small library of polyketide fragments on an unprecedented and synthetically-relevant scale and explore polyketide synthase enzymology. / text

Page generated in 0.0521 seconds