51 |
Contribution of organic cation-type transporters to chemotherapy-induced toxicitiesHuang, Kevin M. January 2020 (has links)
No description available.
|
52 |
Pharmacogenomics Guided Dosing of Tyrosine Kinase Inhibitors in a Patient with Renal Cell CarcinomaGregory, T., Bossaer, John 10 December 2019 (has links)
Cytochrome P450 (CYP) enzymes play a crucial role in the human body. These enzymes are responsible for the synthesis of steroid hormones and cholesterol, as well as the metabolism of external substances such as medications. While more than 50 CYP enzymes have been identified, just 6 are credited with metabolizing most drugs. Of note is CYP 3A4, which metabolizes ~34% of medications that use the CYP enzyme system. CYP enzymes are polymorphic, meaning there are different versions of the same enzyme; therefore there is variability from individual to individual in their ability to metabolize medications. In the oncology field tyrosine kinase has been identified as an important target controlling cell regulatory functions and proliferation. Thus, tyrosine kinase inhibitors have become widely used for a variety of malignancies. Many of these tyrosine kinase inhibitors rely on CYP 3A4 for metabolism and are subject to variable toxicities based on an individual patient’s genome.
A 62-year-old female was diagnosed with Renal Cell Carcinoma (RCC). After undergoing a left nephrectomy, a surveillance scan 21 months after diagnosis was concerning for metastatic disease, which was then confirmed through biopsy. The patient was started on sunitinib 50 mg on days 1-28 of a six-week cycle for metastatic RCC. The patient suffered from Grade 3 myelosupression/mucositis within two weeks of the initiation of therapy. The early onset and severity of the toxicity lead to CYP 3A4 pharmacogenetic testing. She was subsequently found to have a 3A4 polymorphism (*1/*28). The dose of sunitinib was reduced to 25 mg followed by a further reduction to 12.5 mg due to toxicity. Eighteen months after starting sunitinib, a CT scan showed disease progression and therapy was changed to pazopanib. Due to her 3A4 polymorphism, the starting pazopanib dose was empirically reduced by 50% and was started at 400 mg/daily. Pazopanib was held for episodes of severe diarrhea and was further reduced to 200 mg/daily. Nine months after starting pazopanib, new imaging showed lesions in the patient’s liver, confirming disease progression. The patient was subsequently started on nivolumab but quickly progressed. She was then started on cabozantinib at a dose reduced 20 mg/daily. This initial dosing was tolerated well by the patient, so a decision was made to alternate between 20 and 40 mg/daily to increase to an average of 30 mg/daily. She is currently tolerating the 30 mg/daily and continues treatment for metastatic RCC.
As described above, CYP 3A4 polymorphisms can result in severe toxicities that present earlier in the treatment course than traditionally expected. Moving forward there may be a role in testing for these polymorphisms to determine an individual’s optimal dose before initiating therapy with tyrosine kinase inhibitors. The advantage of performing such testing would be to limit the severity of toxicities experienced by this patient population, while retaining the overall benefit of these medications.
|
53 |
Interaction of Gilteritinib, a novel FLT-3 Tyrosine Kinase Inhibitor, with Xenobiotic Uptake TransportersGarrison, Dominique Alencia 23 September 2022 (has links)
No description available.
|
54 |
Targeting Protein-Protein Interactions in Kinase Domains with DNA-Encoded Library Approaches for Therapeutics and DiagnosticsYixing Sun (14021094) 02 December 2022 (has links)
<p>Protein kinases are essential in cell signaling pathways and are well-validated targets for cancer therapeutics and detection of activity levels. Yet, there remains a critical need for kinase inhibitors with high specificity and potency. The development of DNA-encoded library (DEL) technology dramatically facilitates the discovery of ligands to therapeutically relevant proteins. The preparation of combinatorial libraries followed by stringent selections can be exploited to rapidly generate hit molecules that bind to a large variety of targets.</p>
<p>A combinatorial library of peptidomimetics is prepared and subjected to a selection for enriching molecules that can serve as substrates for tyrosine kinase Src. Non-natural substrate molecules are recognized by the anti-phosphotyrosine antibody during the selection. Using biophysical characterization assays including ADP-Glo and NMR, the resulting hits are investigated as novel peptide-substrate competitive inhibitors, as well as specific chemical probes that would benefit kinase activity detection. An ester derivative of the lead compound SrcDEL10 demonstrates cellular activity with inhibition of Src-dependent signaling in cell culture. Subsequently, our effort extends to parallel selections with a highly diverse-scaffold DEL on three cancer-related tyrosine kinases. Several hit molecules are validated with differential phosphotransfer activities among Src, Lyn, and Syk. Studies on the structure activity relationship of hit molecules produce selective kinase substrates with the lowest molecular weights reported to date. Potential bisubstrate inhibitors, showing above 8-fold Src selectivity over Lyn, are designed based on structures of selective substrates.</p>
<p>Meanwhile, high sensitivity of DNA sequence analysis enables the development of specific and multiplexed activity assays. Using the substrate selection strategy, we develop a DNA-based kinome activity profiling assay using DNA conjugates of tyrosine kinase peptide substrates. Selective enrichment of phosphorylated probes enables activity detection by either quantitative PCR (qPCR) or parallel DNA sequencing. Results with detecting recombinant kinases demonstrated a low (~50 pM kinase) limit of detection. A library of 96 DNA-substrate conjugates enabled multiplexed tyrosine kinase assays in cell lysates in a manner analogous to peptide microarrays. This DNA-based assay potentially empowers the detection of tumor biomarkers with high specificity, lower detection limit, multiplexing capability, and high cost-effectiveness.</p>
<p>Together, this research uses DNA-based technologies to assist developing new therapeutics and diagnostics, drug target validation, unveiling drug mechanisms of action, and understanding the role of protein phosphorylation in disease progression.</p>
|
55 |
Preclinical evaluation of pharmacological strategies designed to enhance the activity of established and novel anti-cancer drugs. Synopsis: Evaluation of pharmacological strategies designed to modulate the Warburg effect, enhance the activity of tyrosine kinase inhibitors and novel analogues of Temozolomide.Saleem, Mohammed Umer January 2014 (has links)
Whilst progress has been made in reducing mortality in some cancers, mortality rates remain high in many cancers and there is a need to develop novel therapeutic strategies. In this thesis, various pharmacological strategies designed to enhance the activity of existing therapeutic drugs were evaluated. Cancer cells are dependent upon aerobic glycolysis (the Warburg effect) and glutamine uptake. Using clinically approved tyrosine kinase inhibitors and Bortezomib, significant enhancement of chemosensitivity was observed when used in combination with inhibitors of lactate dehydrogenase (Gossypol) and pyruvate kinase dehydrogenase (Dichloroacetate). In contrast, depletion of glutamine from media had to be extensive in order to induce cell death and cell death only occurred after prolonged exposure to glutamine-deprived conditions. This suggests that glutamine depletion strategies alone are unlikely to be successful but may be useful in combination with other agents targeting glutamine addiction in cancer cells. Finally, Temozolomide (TMZ) is an important drug in the treatment of glioblastomas but its activity is reduced by resistance mechanisms including O6 methyl guanine methyltransferase (MGMT) and mismatch repair (MMR). This thesis has identified analogues of TMZ (EA02-45, EA02-59, EA02-64 and EA02-65) that are MGMT and MMR independent in terms of inducing cell kill in vitro. These compounds are promising leads for future development. In conclusion, this thesis has demonstrated that interfering with the metabolic phenotype of cancer can enhance the activity of existing drugs and identified novel analogues of TMZ that circumvent drug resistance mechanisms that hamper the efficacy of TMZ.
|
56 |
Alterations and mutations in Bruton's tyrosine kinase affect the transcriptional profile and phenotype of chronic lymphocytic leukemia cellsGuinn, Daphne Allyn 26 September 2016 (has links)
No description available.
|
57 |
Targeting Tyrosine Kinase Drug Resistance Mechanisms and Metastatic Pathways in Brain TumorsAljohani, Hashim M. 27 September 2020 (has links)
No description available.
|
58 |
Design, synthesis, and biological evaluation of selective sphingosine kinase inhibitorsRaje, Mithun 08 June 2012 (has links)
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell proliferation. SphK phosphorylates sphingosine to form sphingosine-1-phosphate (S1P) which has been implicated as a major player in cancer growth and survival. SphK exists as two different isoforms, namely SphK1 and SphK2, which play different roles inside the cell. The dearth of isoenzyme-selective inhibitors has been a stumbling block for probing the exact roles of these two isoforms in disease progression.
This report documents our efforts in developing SphK2-selective inhibitors. We provide the first demonstration of a SphK inhibitor containing a quaternary ammonium salt. We developed highly potent and moderately selective inhibitors that were cell permeable and interfered with S1P signaling inside the cell.
In an effort to improve the selectivity of our inhibitors and enhance their in vivo stability, we designed and synthesized second generation inhibitors containing a heteroaromatic linker and a guanidine headgroup. These inhibitors were more potent and selective towards SphK2 and affected S1P signaling in cell cultures and various animal models. / Ph. D.
|
59 |
Structure-activity relationship studies and biological evaluation of selective sphingosine kinase inhibitorsMorris, Emily A. 01 June 2015 (has links)
Sphingosine 1-phosphate (S1P) has become a prevalent drug discovery target due to studies implicating it to several disease pathologies such as fibrosis, sickle cell disease, inflammation, diabetes, and cancer. S1P functions to induce cell proliferation and migration. S1P signaling occurs through intracellular targets or transport outside of the cell via ABC transporters, where it acts as a ligand to G-protein coupled receptors (S1P1-5). Sphingosine kinase (SphK) 1 and 2 phosphorylate sphingosine to S1P; these are the only enzymes known to mediate the phosphoryl transfer. Inhibiting either or both SphKs helps to modulate S1P, which may be useful as a therapeutic avenue for disease states where S1P signaling has gone awry.
Herein, we document our efforts in profiling the structure-activity relationships (SAR) of SphK2 through an iterative process of synthesis and biological testing. First, an SAR structured around the head and linker region of our lead molecule, SLR080811, was performed. SLR080811 has a Ki of 1.3 µM and is 5-fold selective for SphK2. The modifications performed on SLR080811 yielded two promising inhibitors: SLP120701 (SphK2 selective with a Ki of 1.2 µM) and SLP7111228 (>200 fold selective for SphK1 with a Ki of 48 nM). In vitro studies in U937 cells yielded a decrease in S1P levels with the introduction of inhibitors. Mouse studies provided insight into the pharmacokinetic effect of our SphK2-selective inhibitors, revealing an increase in S1P levels in the blood. When in vivo studies were performed with the SphK1 selective inhibitor, S1P levels in blood decreased. These molecules provide the chemical biology tools to determine the effect of modulating S1P levels in vivo.
We also focused our investigation on the tail region of the pharmacophore. From this study, SLM6031434 and SLM6041418 were discovered and both proved to be more potent and selective SphK2 inhibitors than SLR080811. SLM6031434 has a Ki of 370 nM and is 23-fold selective for SphK2. SLM6041418 has a Ki of 430 nM and is 24-fold selective for SphK2. Consistent with our previous observations, in vitro studies showed a decrease in S1P levels when inhibitor was introduced. Similarly, in vivo studies resulted in an increase of S1P levels in the blood. These compounds are positioned towards animal models of disease. / Master of Science
|
60 |
Implicating the mechanisms of ADP-ribosylation factor activation in the resistance of invasive breast cancer cells to EGFR tyrosine kinase inhibitorsHaines, Eric 03 1900 (has links)
ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au récepteur et donc contribue à limiter l’activation d’ARF1.
De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de ARF1 a augmenté la sensibilité descellules aux inhibiteurs de l'EGFR. Nous montrons également que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane mitochondriale et la libération du cytochrome C.
Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur important de la résistance aux inhibiteurs EGFR. / The small GTPase ADP-ribosylation factor-1 (ARF1) has been well described for its role in regulating transport within the Golgi. Recently, in breast cancer cells, we have characterized ARF1 as important mediator of epidermal growth factor receptor (EGFR) signals leading to cell proliferation, migration and invasion. However, the mechanisms regulating ARF1 activity downstream of the EGFR had yet to be defined. Here, we aim to characterize these mechanisms of ARF1 activation in invasive breast cancer cells and demonstrate that activated ARF1 plays an essential role in mediating the resistance of breast cancer cells to EGFR tyrosine kinase inhibitors. We show that the adaptor proteins Grb2 and p66Shc regulate EGF-dependent ARF1 activation. While Grb2 was shown to be essential in the recruitment of ARF1 to the EGFR as well as the activation of this small GTPase, p66Shc blocked the recruitment of this Grb2-ARF1 complex to the receptor and thus suppressed EGF-induced ARF1 activation. Additionally, we demonstrate that ARF1 promotes EGFR tyrosine kinase inhibitor resistance in invasive breast cancer cells. Indeed, the depletion of ARF1 was associated with an increased sensitivity to EGFR inhibition. We show that ARF1 promotes resistance by enhancing survival and proliferative signals through Erk1/2, Src and AKT, while blocking the apoptotic p38MAPK and JNK pathways. Furthermore, ARF1 was shown to stabilize EGFR dynamics (Expression, activation, dimerization and down-regulation) in response to treatment with EGFR inhibitors.
Finally, we highlight the role of ARF1 in mediating mitochondrial-dependent apoptosis in response to EGFR tyrosine kinase inhibitor treatment. The depletion of ARF1 was shown to promote gefitinib-induced cell death as measured by increase expression of pro-apoptotic factors(p66Shc, Bax), altered mitochondrial membrane potential and cytochrome C release.
Together, our results delineate a novel mechanism of ARF1 activation in breast cancer cells and implicate ARF1 activity as an important mediator of EGFR inhibitor resistance further supporting the importance of targeting this GTPase in breast cancer patients.
|
Page generated in 0.0436 seconds