• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 88
  • 68
  • 32
  • 23
  • 14
  • 12
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 509
  • 130
  • 71
  • 55
  • 53
  • 51
  • 45
  • 44
  • 43
  • 41
  • 40
  • 40
  • 37
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Changes in foot and shank coupling due to alterations in foot strike pattern during running

Pohl, M.B., Buckley, John 19 November 2007 (has links)
No / The purpose of this article is determining if and how the kinematic relationship between adjacent body segments changes when an individual’s gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10–15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.
42

Forefoot, rearfoot and shank coupling: Effect of variations in speed and mode of gait.

Pohl, M.B., Messenger, N., Buckley, John January 2007 (has links)
No / Background - Although there is a wealth of research into the kinematic coupling between the foot and shank, it remains unclear whether the relationship is stable across speed and mode of gait. The aim of this study was to determine whether the coupling relationship between the forefoot, rearfoot and shank differed between walking and running, and across different running speeds. Methods Twelve subjects walked/ran barefoot over-ground at one walking and three running speeds. The shank, rearfoot and forefoot were modelled as rigid segments and three-dimensional joint kinematics were determined using a seven camera ProReflex system. Coupling between the forefoot, rearfoot and shank was assessed using cross-correlation and vector coding techniques. Findings Cross-correlation of rearfoot eversion/inversion with shank internal/external rotation was lower in walking (r=0.49) compared to running (r>0.95). This was also the case between rearfoot frontal plane and forefoot sagittal plane motion (walking, r=¿0.80; running, r=¿0.96). Rearfoot frontal plane and forefoot transverse plane cross-correlation was high in both running and walking (r>0.90), but there was little evidence of any coupling between rearfoot frontal plane and forefoot frontal plane motion in any condition. No differences in cross-correlations were found between the three running speeds. Interpretation Kinematic coupling between the forefoot, rearfoot and shank was weak during walking relative to running. In particular, the low cross-correlation between rearfoot eversion/inversion and shank internal/external rotation during walking implies the two motions are not rigidly linked, as has been assumed in previous injury models.
43

On the Direct Kinematic Theory of Thin Elastic Shells

McLean, Leslie C. 09 1900 (has links)
<p> This thesis consists of a rigorous development of the direct kinematic, small-displacement theory of thin elastic shells. The theory is developed, so as to facilitate a derivation of the equations of compatibility of middle-surface strains. These equations are developed by the kinematic approach and it is shown that this produces a more coherent relation of such equations to the general theory of shells, as no special techniques are required. The equations of compatibility are developed again by the formal Saint-Venant method; this development serves to substantiate the validity of the kinematic approach. At the same time, it provides many useful identities which are then employed as transformation relations, in order to compare the various forms of compatibility equations, as developed by other authors. A general comparison of kinematic shell theory with other nonkinematic methods is undertaken, and appended to the main discussion.</p> / Thesis / Master of Engineering (MEngr)
44

A Kinematics Based Tolerance Analysis of Mechanisms

Farkhondeh Biabnavi, Shahrbanoo 29 May 2008 (has links)
No description available.
45

Visual Perception of Heaviness: Influence of Kinematic Information

STREIT, MATTHEW S. 25 August 2008 (has links)
No description available.
46

Expert sensitivity to kinematic information in perception of affordances for others

Weast, Julie A. January 2009 (has links)
No description available.
47

Design and Analysis of Biomimetic Medusa Robots

Villanueva, Alexis A. 08 May 2013 (has links)
The design of unmanned underwater vehicle (UUV) was inspired by the form and functionality of Jellyfish. These natural organisms were chosen as bio-inspiration for a multitude of reasons including: efficiency, good room for payload, and a wide range of sizes and morphology. Shape memory alloy (SMA) actuators were selected as the primary source of actuation for the propulsion of the artificial jellyfish node. These actuators offer high power density which enables a compact system size and silent operation which is preferred for surveillance.  SMA wires mimic the form and function of natural muscles; allowing for a wider range of applications than conventional actuators. Commercial SMA wires (100 um in diameter) can exhibit a 4% deformation of the initial actuator length with a blocking stress of over 200 MPa. The deformation of SMA wire is not enough to mimic the bell contraction of jellyfish. In order to resolve this problem, a beam-shape composite actuator using SMA wires as the active component, termed as BISMAC, was designed to provide large curvature. The BISMAC design was inspired by rowing jellyfish bell contraction. Characterization of maximum deformation in underwater conditions was performed for different actuator configurations to analyze the effect of design parameters that include silicone thickness, flexible steel thickness and distance between SMA and flexible steel. A constant cross-section (CC) BISMAC of 16 cm in length was found to achieve deformation with a radius of curvature of 3.5 cm. Under equilibrium conditions, the CC-BISMAC was found to achieve 80% of maximum deformation consuming 7.9 J per cycle driven at 16.2 V/0.98 A and frequency of 0.25 Hz. Using the a developed analytical model, an actuator design was fabricated mimicking the maximum deformation profile of the A. aurita. The optimized AA-BISMAC achieved a maximum curvature of 0.428 1/cm as compared to 0.438 1/cm for the A. aurita with an average squared root error of 0.043 (1/cm), 10.2% of maximum A. aurita curvature.   BISMAC actuators are unidirectional flexible actuators capable of exhibiting high curvature. To extend the application range of these actuators, they were modified to achieve bidirectional deformation. The new bidirectional actuators termed as "BiFlex" actuators had the capability to achieve large deformation in two directions. The FlexLegs consist of six segments which can be actuated individually. Two different sets of legs were constructed to determine the effect of size. The small legs measured 35.8 mm in height and 63.2 mm in width and the large legs were 97.4 mm in height and 165.4 mm in width. The small FlexLegs achieved a maximum deformation of 12 % and 4 % in the x- and y-direction respectively using a power of 0.7 W while producing a maximum force of 0.023 N. They were also able to withstand a load of 1.18 N. The large FlexLegs had a maximum deformation of 57 % and 39 % in the x- and y-direction respectively using a power of 3 W while producing a force of 0.045 N. They were able to withstand a load of 0.25 N. The legs were also able to perform several walking algorithms consisting of stepping, crabbing and yawing. In order to reduce the power consumption and contraction time of SMA wires, a feedback control scheme using wire resistance was developed. The controller required the knowledge of threshold resistance and safe current inputs which were determined experimentally. The overheating effect of SMA wires was analyzed for BioMetal Fiber (BMF) and Flexinol 100 "m diameter wires revealing an increase in resistance as the wires overheated. The controller was first characterized on a SMA wire with bias spring system for a BMF 100 using I_hi=0.5 A and I_low=0.2 A, where hi corresponds to peak current for fast actuation and low corresponds to the safe current which prevents overheating and maintains desired deformation. A contraction of 4.59% was achieved in 0.06 s using the controller and the deformation was maintained for 2 s at low current. The BISMAC actuator was operated using the controller with I_hi=1.1 A and I_low=0.65 A achieving a 67% decrease in contraction time compared to using a constant driving current of I_low=0.2 A and a 60% decrease in energy consumption compared to using constant I_hi=0.5 A while still exceeding the contraction requirements of the Aurelia aurita. Two fundamental parameters at the composition level were associated with the power consumption of SMA: i) martensite to austentite phase transition temperature and ii) thermal hysteresis. Ideally, one would like to reduce both these quantities and for this purpose an equiatomic Ni-Ti alloy was modified with Cu. Replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For Ni-Ti alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 "C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, ±1, ±2, ±3, ±4, ±5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The results show the possibility of achieving low power consuming high performance SMAs. Using the BISMAC actuator and feedback control system, a robotic jellyfish called Robojelly that mimics the morphology and kinematics of the Aurelia aurita species was created. A systematic fabrication technique was developed to replicate the essential structural features of A. aurita. Robojelly's body was fabricated from RTV silicone having a total mass of 242 g and bell diameter of 16.4 cm. Robojelly was able to generate enough thrust in static water conditions to propel itself and achieve a proficiency of 0.19 s-1 while the A. aurita achieves a proficiency of around 0.25 s-1. A thrust analysis based on empirical measurements for natural jellyfish was used to compare the performance of the different robotic configurations. The configuration with best performance was a Robojelly with segmented bell and a passive flap structure. Robojelly was found to consume an average power on the order of 17 W with the actuators not having fully reached thermal steady state. A comparative kinematics analysis was conducted between a natural Aurelia aurita and Robojelly. The resistance feedback controller was implemented to tailor the deformation profile of BISMAC actuators embedded in Robojelly. Robojelly's performance was quantified in terms of thrust production and power consumption during vertical swimming experiments. A maximum average instantaneous thrust production of 0.006 N was achieved at a driving current (Ihi) of 1.5 A with 35% duty cycle. Rapid heating of SMA wires was found to reduce power consumption and increase thrust. The bell kinematic analysis revealed resemblance and differences in bell deformation trajectories of the biomimetic and natural jellyfish. The inflexion point of the A. aurita was found to convert an inner bell trajectory into an outer one during contraction which assists the thrust production. A biomimetic robot inspired by Cyanea capillata, termed as "Cyro", was developed to meet the functional demands of underwater surveillance in defense and civilian applications. The design of Cyro required kinematics of large C. capillata which are elusive creatures. Obtaining accurate kinematic data of animals is essential for many biological studies and bio-inspired engineering applications. Many animals such as the C. capillata however, are either too large or too delicate to transport to controlled environments where accurate kinematic data can easily be obtained. Often, in situ recordings are the only means available but are often subject to multi-axis motion and relative magnification changes with time, which lead to large discrepancies in animal kinematics. In Chapter 5, techniques to compensate for magnification and body rotation of animal footage were developed. A background reference point and animal dimensions were used to account for magnification. A linear fit of body points were used to measure body rotation. These techniques help resolve animal kinematics from in situ video footage. The techniques were applied to a large jellyfish, Cyanea capillata, swimming in ocean waters. The bell kinematics were captured by digitizing exumbrella profiles for two full swimming cycles. Magnification was accounted for by tracking a reference point on the ocean floor and by tracking the C. capillata exumbrella arclength in order to have a constant scale through the swimming cycles. A linear fit of the top bell portion was used to find the body angle with respect to the camera coordinate system. Bell margin trajectories over two swimming cycles confirm the accuracy of the correction techniques. The corrected profiles were filtered and interpolated to provide a set of time-dependent points along the bell. The ability to use in situ footage with significant multi-axis motion provides an opportunity to analyze previously impractical footage for gaining a better understanding of large or delicate organisms. The swimming kinematics of the C. capillata were analyzed after extracting the required kinematics from the in situ video. A discrete model of the exumbrella was developed and used to analyze the kinematics. The exumbrella discretization was done using three different methods. The first method consists of analyzing the animal anatomy for structural and mechanical features. The second method consists of analyzing the bell kinematics for areas of highest deformation over time. The third method consists of optimizing node locations that can provide minimal error with comparison to the digitized profiles. Two kinematic models of the C. capillata swimming motion were developed by fitting Fourier series to the discretized segments and angles formed by each segment. The four-segment anatomical kinematic model was used to analyze the bell kinematics of the C. capillata. It was found that the bell does not deform uniformly over time with segments lagging behind others. Hysteresis between contraction and relaxation was also present through most of the exumbrella. The bell margin had the largest hysteresis with an outer path during contraction and inner path during relaxation. The subumbrella volume was approximated based on the exumbrella kinematics and was found to increase during contraction. Cyro was designed to mimic the morphology and swimming mechanism of the natural counterpart. The body of the vehicle consists of a rigid support structure with linear DC motors which actuate eight mechanical arms. The mechanical arms in conjunction with artificial mesoglea create the hydrodynamic force required for propulsion. The full vehicle measures 170 cm in diameter and has a total mass of 76 kg. An analytical model of the mechanical arm kinematics was developed. The analytical and experimental bell kinematics were analyzed and compared to the C. capillata. Cyro reached the water surface untethered and autonomously from a depth of 182 cm in five actuation cycles. It achieved an average velocity of 8.47 cm/s while consuming an average power of 70 W. A thrust stand was developed to calculate the thrust directly from a single bell segment yielding an average thrust of 27.9 N for the whole vehicle. Steady state velocity during Cyro's swimming test was not reached but the measured performance during its last swim cycle resulted in a cost of transport of 10.9 J/kg m and total efficiency of 3%. It was observed that a passive flexible margin or flap, drastically increases the performance of the Robojelly. The effects of flap length and geometry on Robojelly were analyzed using PIV. The flap was defined as the bell section which is located between the flexion point and bell margin. The flexion point was established as the location where the bell undergoes a significant change compliance and therefore in slope. The flap was analyzed in terms of its kinematics and hydrodynamic contribution. An outer trajectory is achieved by the flap margin during contraction while an inner trajectory is achieved during relaxation. The flap kinematics was found to be replicable using a passive flexible structure. Flaps of constant cross section and varying lengths were put on the robotic vehicle to conduct a systematic parametric study. Robojelly's swimming performance was tested with and without a flap. This revealed a thrust increase 1340% with the addition of a flap.  Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) to analyze the change in vortex structures as a function of flap length.  The robot input parameters stayed constant over the different configurations tested thus maintaining a near constant power consumption. Non-dimensional circulation results show a dependence on flap kinematics and geometry. The robot was approximated as a series of pitching panels circularly oriented around its apex. The first circulation peak of the pitching panel approximation revealed a normalized standard deviation of 0.23. A piston apparatus was designed and built to test different flexible margin configurations. This apparatus allow the isolation of the flap parameters and remove the uncertainties coming from the robotic vehicle. / Ph. D.
48

Geometry, kinematics and age of the northern half of the White Mountain shear zone, eastern California and Nevada

Sullivan, Walter Andrew 27 June 2003 (has links)
The White Mountain shear zone (WMSZ) is a zone of intense penetrative deformation that lies along the western front of the northern White-Inyo Range in eastern-most California and western-most Nevada. The northern half of the WMSZ is characterized by a NNE to NNW-striking steeply dipping foliation and associated shallowly plunging NNE to NW-trending stretching lineations. S-C fabrics observed in outcrop, microstructural shear sense indicators and kilometer-scale foliation geometry all indicate dextral movement. Localized discrete zones of coeval steeply plunging stretching lineations are present in the northern half of the WMSZ. Microstructural data from these domains indicate a high component of pure shear within a separate coeval kinematic framework and hence a transpressional history. The WMSZ appears to be tectonically related to both the Sierra Crest shear system to the west and the Santa Rita shear system to the south. Correlation between the WMSZ and the Santa Rita shear system indicates that Late Cretaceous dextral transpression may extend up to ~120 km along the western front of the White-Inyo Range. Cross-cutting relationships with Late Cretaceous plutons bracket the age of the WMSZ at between 72-92 Ma. A lack of annealing recrystallization in deformed quartz and the presence of high temperature crystallographic fabrics near the margins of the ca. 72 Ma Boundary Peak pluton indicate significant strain accumulation within the WMSZ subsequent to emplacement of the Boundary Peak pluton. These observations extend the duration of Late Cretaceous dextral transpression in eastern California to at least as recent as 72 Ma. / Master of Science
49

Design and analysis of a three degrees of freedom (DOF) parallel manipulator with decoupled motions

Qian, Jijie 01 April 2009 (has links)
Parallel manipulators have been the subject of study of much robotic research during the past three decades. A parallel manipulator typically consists of a moving platform that is connected to a fixed base by at least two kinematic chains in parallel. Parallel manipulators can provide several attractive advantages over their serial counterpart in terms of high stiffness, high accuracy, and low inertia, which enable them to become viable alternatives for wide applications. But parallel manipulators also have some disadvantages, such as complex forward kinematics, small workspace, complicated structures, and a high cost. To overcome the above shortcomings, progress on the development of parallel manipulators with less than 6-DOF has been accelerated. However, most of presented parallel manipulators have coupled motion between the position and orientation of the end-effector. Therefore, the kinematic model is complex and the manipulator is difficult to control. Only recently, research on parallel manipulators with less than six degrees of freedom has been leaning toward the decoupling of the position and orientation of the end-effector, and this has really interested scientists in the area of parallel robotics. Kinematic decoupling for a parallel manipulator is that one motion of the up-platform only corresponds to input of one leg or one group of legs. And the input cannot produce other motions. Nevertheless, to date, the number of real applications of decoupled motion actuated parallel manipulators is still quite limited. This is partially because effective development strategies of such types of closed-loop structures are not so obvious. In addition, it is very difficult to design mechanisms with complete decoupling, but it is possible for fewer DOF parallel manipulators. To realize kinematic decoupling, the parallel manipulators are needed to possess special structures; therefore, investigating a parallel manipulator with decoupling motion remains a challenging task. This thesis deals with lower mobility parallel manipulator with decoupled motions. A novel parallel manipulator is proposed in this thesis. The manipulator consists of a moving platform that is connecting to a fixed base by three legs. Each leg is made of one C (cylinder), one R (revolute) and one U (universal) joints. The mobility of the manipulator and structure of the inactive joint are analyzed. Kinematics of the manipulator including inverse and forward kinematics, velocity equation, kinematic singularities, and stiffness are studied. The workspace of the parallel manipulator is examined. A design optimization is conducted with the prescribed workspace. It has been found that due to the special arrangement of the legs and joints, this parallel manipulator performs three translational degrees of freedom with decoupled motions, and is fully isotropic. This advantage has great potential for machine tools and Coordinate Measuring Machine (CMM). / UOIT
50

Kinematic and inertial loading-based seismic assessment of pile foundations in liquefiable soil / 液状化地盤における杭基礎の地盤変位・慣性力に基づく地震時挙動の評価

SAHARE, ANURAG RAHUL 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23484号 / 工博第4896号 / 新制||工||1765(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 渦岡 良介, 教授 木村 亮, 准教授 澤村 康生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0729 seconds