281 |
Neuronové sítě pro klasifikaci typu a kvality průmyslových výrobků / Neural networks for visual classification and inspection of the industrial productsMíček, Vojtěch January 2020 (has links)
The aim of this master's thesis thesis is to enable evaluation of quality, or the type of product in industrial applications using artificial neural networks, especially in applications where the classical approach of machine vision is too complicated. The system thus designed is implemented onto a specific hardware platform and becomes a subject to the final optimalisation for the hardware platform for the best performance of the system.
|
282 |
Detekce, sledování a klasifikace automobilů / Detection, Tracking and Classification of VehiclesVopálenský, Radek January 2017 (has links)
The aim of this master thesis is to design and implementation in language C++ a system for the detection, tracking and classification of vehicles from streams or records from traffic cameras. The system runs on the platform Robot Operating System and uses the OpenCV, FFmpeg, TensorFlow and Keras libraries. For detection is used cascade classifier, for tracking Kalman filter and for classification of the convolutional neural network. Success rate for detection is 91.93 %, tracking 81.94 % and classification 63.72 %. This system is part of a comprehensive system, that can moreover calibrate video and measure of vehicles speed. The resulting system can be used for traffic analysis.
|
283 |
Vylepšení Adversariální Klasifikace v Behaviorální Analýze Síťové Komunikace Určené pro Detekci Cílených Útoků / Improvement of Adversarial Classification in Behavioral Analysis of Network Traffic Intended for Targeted Attack DetectionSedlo, Ondřej January 2020 (has links)
V této práci se zabýváme vylepšením systémů pro odhalení síťových průniků. Konkrétně se zaměřujeme na behaviorální analýzu, která využívá data extrahovaná z jednotlivých síťových spojení. Tyto informace využívá popsaný framework k obfuskaci cílených síťových útoků, které zneužívají zranitelností v sadě soudobých zranitelných služeb. Z Národní databáze zranitelností od NIST vybíráme zranitelné služby, přičemž se omezujeme jen na roky 2018 a 2019. Ve výsledku vytváříme nový dataset, který sestává z přímých a obfuskovaných útoků, provedených proti vybraným zranitelným službám, a také z jejich protějšků ve formě legitimního provozu. Nový dataset vyhodnocujeme za použití několika klasifikačních technik, a demonstrujeme, jak důležité je trénovat tyto klasifikátory na obfuskovaných útocích, aby se zabránilo jejich průniku bez povšimnutí. Nakonec provádíme křížové vyhodnocení datasetů pomocí nejmodernějšího datasetu ASNM-NPBO a našeho datasetu. Výsledky ukazují důležitost opětovného trénování klasifikátorů na nových zranitelnostech při zachování dobrých schopností detekovat útoky na staré zranitelnosti.
|
284 |
Klasifikace obrazů planktonu s proměnlivou velikosti pomocí konvoluční neuronové sítě / Classification of Varying-Size Plankton Images with Convolutional Neural NetworkBureš, Jaroslav January 2020 (has links)
Tato práce pojednává o technikách automatické analýzy obrazu založené na konvolučních neuronových sítích (CNN), zaměřených na klasifikaci planktonu. V oblasti studování planktonu panuje velká diverzita v jeho tvarech a velikostech. Kvůli tomuto bývá klasifikace pomocí CNN náročná, jelikož CNN typicky požadují definovanou velikost vstupu. Běžné metody využívají škálování obrazu do jednotné velikosti. Avšak kvůli tomuto jsou ztraceny drobné detaily potřebné ke správné klasifikaci. Cílem práce bylo navrhnout a implementovat CNN klasifikátor obrazových dat planktonu a prozkoumat metody, které jsou zaměřené na problematiku různorodých velikostí obrázků. Metody, jako jsou patch cropping, využití spatial pyramid pooling vrstvy, zahrnutí metadat a sestavení multi-stream modelu jsou vyhodnoceny na náročném datasetu obrázků fytoplanktonu. Takto bylo dosaženo zlepšení o 1.0 bodů pro InceptionV3 architekturu s výslednou úspěšností 96.2 %. Hlavním přínosem této práce je vylepšení CNN klasifikátorů planktonu díky úspěšné aplikaci těchto metod.
|
285 |
Metody detekce, segmentace a klasifikace obtížně definovatelných kostních nádorových lézí ve 3D CT datech / Methods of Detection, Segmentation and Classification of Difficult to Define Bone Tumor Lesions in 3D CT DataChmelík, Jiří January 2020 (has links)
The aim of this work was the development of algorithms for detection segmentation and classification of difficult to define bone metastatic cancerous lesions from spinal CT image data. For this purpose, the patient database was created and annotated by medical experts. Successively, three methods were proposed and developed; the first of them is based on the reworking and combination of methods developed during the preceding project phase, the second method is a fast variant based on the fuzzy k-means cluster analysis, the third method uses modern machine learning algorithms, specifically deep learning of convolutional neural networks. Further, an approach that elaborates the results by a subsequent random forest based meta-analysis of detected lesion candidates was proposed. The achieved results were objectively evaluated and compared with results achieved by algorithms published by other authors. The evaluation was done by two objective methodologies, technical voxel-based and clinical object-based ones. The achieved results were subsequently evaluated and discussed.
|
286 |
Detekce pohybujících se objektů ve videu s využitím neuronových sítí pomocí Android aplikace / Object detection in video using neural networks and Android applicationMikulec, Vojtěch January 2021 (has links)
This master’s thesis deals with the implementation of functional solution for classifying road users using mobile device with Android operating system. The goal is to create Android application which classifies vehicles in real time using rear-facing camera and saves timestamps of classification. Testing is performed mostly with own, diversely modificated dataset. Five models are trained and their performance is measured in dependence on hardware. The best classification performance is from pretrained MobileNet model where transfer learning with 6 classes of own dataset is used – 62,33 %. The results are summarized and a method for faster and more accurate traffic analysis is proposed.
|
287 |
Unární klasifikátor obrazových dat / Unary Classification of Image DataBeneš, Jiří January 2021 (has links)
The work deals with an introduction to classification algorithms. It then divides classifiers into unary, binary and multi-class and describes the different types of classifiers. The work compares individual classifiers and their areas of use. For unary classifiers, practical examples and a list of used architectures are given in the work. The work contains a chapter focused on the comparison of the effects of hyper parameters on the quality of unary classification for individual architectures. Part of the submission is a practical example of reimplementation of the unary classifier.
|
288 |
Pokročilé skórování spánkových dat / Advanced scoring of sleep dataJagošová, Petra January 2021 (has links)
The master´s thesis is focused on advanced scoring of sleep data, which was performed using deep neural network. Heart rate data and the movement information were used for scoring measured using an Apple Watch smartwatch. After appropriate pre-processing, this data serves as input parameters to the designed networks. The goal of the LSTM network was to classify data into either two groups for sleep and wake or into three groups for wake, Non-REM and REM. The best results were achieved by network doing classification of sleep vs. wake using the accelerometer. The statistical evaluation of this best-designed network reached the values of sensitivity 71,06 %, specificity 57,05 %, accuracy 70,01 % and F1 score 81,42 %.
|
289 |
Klasifikace cév sítnice / Classification of retinal blood vesselsMitrengová, Jana January 2021 (has links)
The thesis deals with the classification of the retinal blood vessels in retinal image data. The first part of the thesis deals with the anatomy of the human eye and focuses on the description of the retina and its blood circulation. It further describes the principle of fundus camera and experimental video ophthalmoscope. The second part of the thesis is devoted to a literature search of academic publications that deal with the classification of the retinal vessels into arteries and veins. Subsequently, the principle of selected machine learning methods is presented. Based on the literature research, two methods for the classification of the blood vessels were proposed, the first one using the SVM classifier and the second one using the convolutional neural network U-Net. At the end, the analysis of vascular pulsations was performed. The practical part of the thesis was carried out in Matlab programming interface and images from the RITE, IOSTAR and AFIO database were used for classification and the retinal video sequences taken with an experimental video ophthalmoscope were processed in the analysis of pulsations.
|
290 |
Rozpoznávání hudebních coververzí pomocí technik Music Information Retrieval / Recognition of music cover versions using Music Information Retrieval techniquesMartinek, Václav January 2021 (has links)
This master’s thesis deals with designs and implementation of systems for music cover recognition. The introduction part is devoted to the calculation parameters from audio signal using Music Information Retrieval techniques. Subsequently, various forms of cover versions and musical aspects that cover versions share are defined. The thesis also deals in detail with the creation and distribution of a database of cover versions. Furthermore, the work presents methods and techniques for comparing and processing the calculated parameters. Attention is then paid to the OTI method, CSM calculation and methods dealing with parameter selection. The next part of the thesis is devoted to the design of systems for recognizing cover versions. Then there are compared systems already designed for recognizing cover versions. Furthermore, the thesis describes machine learning techniques and evaluation methods for evaluating the classification with a special emphasis on artificial neural networks. The last part of the thesis deals with the implementation of two systems in MATLAB and Python. These systems are then tested on the created database of cover versions.
|
Page generated in 0.0454 seconds