1 |
Aplikace principů znalostního managementu ve vybrané firmě / Application of Knowledge Management Principles in Selected CompanyČervienka, Juraj January 2013 (has links)
The thesis deals with the issue of the knowledge management and its principles. The introduction of thesis is addressed to theoretical basics of the knowledge management that is followed by the practical part. The theoretical part provides the starting point for the proposal and applications of system for the chosen company. The main aim of the practical part was to form the application for management of projects and the repository of the knowledge of the chosen company. This aim should be followed by increasing of the work efficiency and enhancing of the access to the information. The resulting application will be set up into the company workings.
|
2 |
Aplicação da mineração de opinião no planejamento turístico do município de GramadoEndres, Marco Antonio Trois 28 April 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-07-18T18:07:03Z
No. of bitstreams: 1
Marco Antonio Trois Endres _.pdf: 5043076 bytes, checksum: f944e2d6d0e1a6e1ca49512a57670875 (MD5) / Made available in DSpace on 2016-07-18T18:07:04Z (GMT). No. of bitstreams: 1
Marco Antonio Trois Endres _.pdf: 5043076 bytes, checksum: f944e2d6d0e1a6e1ca49512a57670875 (MD5)
Previous issue date: 2016-04-28 / Nenhuma / O propósito deste estudo é explorar o processo de descoberta de conhecimento e analisar as oportunidades geradas pela Mineração de Opinião como técnica para se obter um retorno sobre experiência do turista em relação aos produtos e serviços ofertados pelo destino turístico. Entender o turista quanto ao seu comportamento de compra e seus hábitos de viagem é fundamental para a ampliação do mercado turístico e melhoria da experiência turística do visitante. Usuários da web têm a oportunidade de registrar e divulgar suas ideias e opiniões através de comentários em redes sociais. Estas opiniões estão disponíveis e em grande volume para as organizações. Neste contexto perguntam-se, quais as contribuições da Mineração de Opinião na geração de informação útil para a gestão da atividade turística, como suporte ao processo de tomada de decisão no planejamento e no aprimoramento das suas ações? Este estudo teve como cenário de investigação o município de Gramado/RS e os comentários registrados em redes sociais pelos turistas que o visitam. Para alcançar o propósito deste estudo, foram extraídas opiniões do Twitter e Facebook e submetidas a uma técnica de análise de sentimentos. Como resultado do estudo, são apresentados e discutidos os resultados da aplicação da Mineração de Opinião consolidados de acordo com as dimensões de competitividade que o município é avaliado. / The purpose of this study is to explore the knowledge discovery process and analyze the opportunities generated by the Opinion Mining as a technique to obtain a feedback on the tourist experience about products and services offered by the tourist destination. Understanding the tourist about their buying behavior and their travel habits is essential to the expansion of the tourist market and improvement of the tourist experience. Web users have the opportunity to register and show their ideas and opinions through posts on social networks. These opinions are available in high volume to organizations. In this context, what are the contributions of Opinion Mining to generate useful information for the management of tourism activities, to support the decision-making process in planning and improvement of their actions? This study analyses the comments registered on social networks by tourists who visit Gramado/RS. To achieve the purpose of this study, opinions were extracted from Twitter and Facebook and submitted to a sentiment analysis technique. As a result of the study are presented and discussed the results summarized according to the competitiveness of dimensions that the municipality is assessed.
|
3 |
Prioritizing Causative Genomic Variants by Integrating Molecular and Functional Annotations from Multiple Biomedical OntologiesAlthagafi, Azza Th. 20 July 2023 (has links)
Whole-exome and genome sequencing are widely used to diagnose individual patients. However, despite its success, this approach leaves many patients undiagnosed. This could be due to the need to discover more disease genes and variants or because disease phenotypes are novel and arise from a combination of variants of multiple known genes related to the disease. Recent rapid increases in available genomic, biomedical, and phenotypic data enable computational analyses, reducing the search space for disease-causing genes or variants and facilitating the prediction of causal variants. Therefore, artificial intelligence, data mining, machine learning, and deep learning are essential tools that have been used to identify biological interactions, including protein-protein interactions, gene-disease predictions, and variant--disease associations. Predicting these biological associations is a critical step in diagnosing patients with rare or complex diseases.
In recent years, computational methods have emerged to improve gene-disease prioritization by incorporating phenotype information. These methods evaluate a patient's phenotype against a database of gene-phenotype associations to identify the closest match. However, inadequate knowledge of phenotypes linked with specific genes in humans and model organisms limits the effectiveness of the prediction. Information about gene product functions and anatomical locations of gene expression is accessible for many genes and can be associated with phenotypes through ontologies and machine-learning models. Incorporating this information can enhance gene-disease prioritization methods and more accurately identify potential disease-causing genes.
This dissertation aims to address key limitations in gene-disease prediction and variant prioritization by developing computational methods that systematically relate human phenotypes that arise as a consequence of the loss or change of gene function to gene functions and anatomical and cellular locations of activity. To achieve this objective, this work focuses on crucial problems in the causative variant prioritization pipeline and presents novel computational methods that significantly improve prediction performance by leveraging large background knowledge data and integrating multiple techniques.
Therefore, this dissertation presents novel approaches that utilize graph-based machine-learning techniques to leverage biomedical ontologies and linked biological data as background knowledge graphs. The methods employ representation learning with knowledge graphs and introduce generic models that address computational problems in gene-disease associations and variant prioritization. I demonstrate that my approach is capable of compensating for incomplete information in public databases and efficiently integrating with other biomedical data for similar prediction tasks. Moreover, my methods outperform other relevant approaches that rely on manually crafted features and laborious pre-processing. I systematically evaluate our methods and illustrate their potential applications for data analytics in biomedicine. Finally, I demonstrate how our prediction tools can be used in the clinic to assist geneticists in decision-making. In summary, this dissertation contributes to the development of more effective methods for predicting disease-causing variants and advancing precision medicine.
|
Page generated in 0.0484 seconds