• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Mechanical Analysis of Continuously Transposed Conductor / Modellering och mekanisk analys av CTC

Hu, Haicheng January 2020 (has links)
As the CTC (transposed continuously conductor) is widely accepted as the cable used in transformers, mechanical analysis of CTC under different load cases is in need. This paper introduces a new method of creating detailed CTC models automatically in Comsol Multiphysics and the models are applied for conducting FEA (Finite Element Analysis) for different load cases of practical importance. The numerical analysis is verified by comparing the FEA results and the analytical results for the response of the CTC. The difference between the FEA of simplified models (bare straight strands conductor models) and detailed models (transposed strand conductor models), is also evaluated. Finally, the detailed model with an epoxy coating is evaluated. The detailed CTC model is found to be more compliant when subjected to radial bending compared to the simplified model, but it is stiffer than the simplified model when subjected to an axial bending load. In torsion, the detailed CTC models have much lower torsional rigidity than the simplified models. The epoxy coating makes the whole structure much more compliant and largely decreases the torsional rigidity of the CTC structure. The research shows that the difference between the simplified model and the detailed model is not negligible in many load cases. However, for an analysis that does not strictly require accuracy when doing axial loading analysis, the simplified model is a good option since it is easier to model, computationally cheaper, and the result is close to the detailed model result. In other cases, the detailed model is to be preferred. / CTC-kablar som används i högspänningstransformatorer utsätts under drift för olika typer av mekaniska laster och det finns ett behov att kunna analysera mekaniska egenskaper vid olika typer av lastfall. I denna rapport introduceras en ny metod för att automatiskt skapa detaljerade modeller av CTC i Comsol Multiphysics. Dessa modeller används sedan för analys med finita element-metoden (FEM) av några praktiskt viktiga belastningsfall. Den numeriska analysen verifieras genom att jämföra FE-resultaten med analytiska resultat för enkla idealiserade balkgeometrier. Vidare analyseras skillnaden mellan FEA för de förenklade modellerna och geometriskt detaljerade modeller CTC både med och utan isolerande epoxiskikt kring ledarna. Den detaljerade CTC-modellen visade sig vara mindre styv, jämfört med den förenklade modellen, när den utsätts för radiell böjning, men styvare när den utsattes för en axiell böjning, där radiell och axiell avser riktningarna CTC har i en högspänningstransformator. I torsion har de detaljerade CTC-modellerna mycket lägre vridstyvhet än de förenklade modellerna. Epoxibeläggningen gör hela strukturen mycket mer kompliant och minskar till stor del torsionsstyvheten hos CTC strukturerna. Vidare visar resultaten att skillnaden mellan den förenklade modellen och den detaljerade modellen inte är försumbar i många belastningsfall. Men för en analys som inte strikt kräver noggrannhet när man utför axiell belastningsanalys, är den förenklade modellen ett bra alternativ eftersom den är avsevärt lättare att modellera, beräkningarna är mycket snabbare och resultaten ligger nära de för den detaljerade modellen. I andra fall är den detaljerade modellen att föredra.
2

Lämpliga material för textila kärlimplantat : Kartläggning av kliniskt dokumenterade alternativ

Ljungberg, Ida, Martvall, Amanda January 2020 (has links)
En tredjedel av alla bypass-operationer leder till att kärlimplantaten slutar fungerar inom ettårs tid. En anledning till detta är bildandet av ogynnsam vävnad som sker i form av ärrbildning efter implantationen. Ärrvävnaden orsakar nya förträngningar vilket leder till ett försämrat blodflöde. Kärlimplantatet Y-graft har genom sin design som följer Murray´s lag, en naturlig blodflödesfördelning. Designen i form av ett Y har kunnat bekräftas vara fördelaktig då geometrin vid utflödet minskar risken för ärrbildning. Vad som saknas för att Y-graft ska kunna komma ut på marknaden är ett lämpligt material. Med detta som bakgrund uppkom syftet med litteraturstudien att undersöka vilka material meddokumenterad klinisk historik som är möjliga att använda vid textil tillverkning av Y-graft. Genom en gedigen litteratursökning med hjälp av sökverktyg som U.S. Food and Drug Administration (FDA) tillsammans med andra databaser inom de medicinska och materialtekniska områdena, har en förståelse skapats kring vilka material som används i medicintekniska produkter och som är möjliga kandidater till Y-graft. Litteraturstudien resulterade i att materialen polyetentereftalat, polybutentereftalat, polybutester polytetrafluoreten, polyester-, polyeter- och polykarbonatbaserade polyuretaner samt polypropen, polyeten, alfatisk polyamid och silke finns i godkända medicintekniska produkter på den amerikanska marknaden. De presenterade materialen har på så visdokumenterad klinisk historik och är lämpliga kandidater att använda vid textil tillverkning av Y-graft. De godkända materialkandidaterna som presenteras kan även beläggas medbiologiska polymerer för förbättrad biokompatibilitet. Materialkandidaterna har godkänts i medicintekniska produkter av U.S. Food and Drug Administration (FDA). Genom godkännandet har alla de presenterade materialen dokumenterad klinisk historik och är där med lämpliga kandidater att använda vid textiltillverkning av Y-graft. / One third of all bypass surgeries causes vascular implants to stop working within a year. A reason for this is the formation of unfavorable tissue that occurs in the form of scarring after implantation. The scar tissue causes new constrictions, which leads to impaired blood flow. The vascular implant Y-graft, by design follows Murray's law and therefore has a natural blood flow distribution. The design in the form of a Y has been confirmed to be advantageous. The Y geometry at the outflow reduces the risk of scarring. What is missing for Y-graft to be able to enter the market is a suitable material. With this as a background, the purpose of the literature study was to investigate which materials with documented clinical history can be used in textile production of Y-graft. Through a thorough literature search, using search tools like the U.S. Food and Drug Administration (FDA) together with other databases in the medical and material engineering fields, an understanding has been created about which materials are used in medical technology products and which are potential candidates for Y-graft. The literature study concluded that the materials polyethylene terephthalate, polybutheneterephthalate, polybutester polytetrafluoroethylene are found in approved medical technology products in the United States. Polyester, polyether and polycarbonate based polyurethanes and polypropylene, polyethylene, alphatic polyamide and silk are also found in the United States medical market. These presented materials thus have documented clinical history and are suitable candidates for use in textile manufacturing of Y-graft. The approved material candidates presented can also be coated with biological polymers for improved biocompatibility. The material candidates have been approved in medical technology products by the U.S. Food and Drug Administration (FDA). With this approval, all the presented materials have documented clinical history and are therefore suitable candidates to use when manufacturing Y-graft.

Page generated in 0.0652 seconds