Spelling suggestions: "subject:"konnektor"" "subject:"konnektiv""
1 |
Impact of the autoencoder-based FINTA tractogram filtering method on brain networks in subjects with Mild Cognitive Impairment / Effekten av autoencoderbaserad FINTA-traktogramfiltrering på hjärnans konnektom hos personer med mild kognitiv nedsättningPstrusiński, Teodor January 2023 (has links)
Diffusion Magnetic Resonance Imaging (dMRI) is a method for measuring molecular diffusion in biological tissue microstructure. This information can be used to predict the location and orientation of white matter fibers in the brain, a process known as tractography. Analysis of the map of neural connections can provide meaningful information about the severity or progression of neurodegenerative diseases such as Alzheimer's, and allow for early intervention to prevent progression. However, tractography has its pitfalls; current fiber-tracking algorithms suffer from generating false-positive connections and affect the reliability of structural connectivity maps. To counter this downside, tractogram filtering methods have been created to remove inaccurately predicted connections. This study aims at evaluating the impact of the novel semi-supervised filtering method FINTA on the brain networks of people with Mild Cognitive Impairment (MCI), which precedes diseases like Alzheimer's. The proposed experiments use the Nipype Neuroimaging Python library for the automation of the entire process. Registration, parcellation, and tracking were performed using MRtrix and FSL. Furthermore, DIPY and NiBabel were used for tractogram processing. Finally, filtering was performed based on code provided by the authors of FINTA, and graph measures were computed using the NetworkX Python library. Experiments were performed on both raw and weighted structural connectivity matrices. Results suggest that filtering has an effect on graph measures such as the clustering coefficient and betweenness centrality for different nodes corresponding to brain regions. / Diffusion magnetisk resonanstomografi (diffusions MRT) är en metod för att mäta den molekylära diffusionen i mikrostrukturen i biologisk vävnad. Denna information kan användas för att förutsäga var fibrerna i den vita substansen i hjärnan befinner sig och hur de är orienterade i den process som kallas traktografi. Analys av kartan över nervförbindelser kan ge meningsfull information om svårighetsgraden eller utvecklingen av neurodegenerativa sjukdomar som Alzheimers och möjliggöra tidiga insatser för att förhindra utvecklingen. Traktografi har dock sina fallgropar och nuvarande algoritmer för fiberspårning lider av att generera falska positiva anslutningar och påverkar de strukturella konnektivitetskartorna som förhindrar tillförlitliga förutsägelser. För att motverka denna nackdel har filtreringsmetoder för traktogram skapats för att ta bort de felaktigt förutsagda anslutningarna. Denna studie syftar till att utvärdera effekterna av den nya semi-övervakade filtreringsmetoden FINTA på hjärnnätverk hos personer med lindrig kognitiv störning (eng. mild cognitive impairment, MCI) som föregår sjukdomar som Alzheimers. I de föreslagna experimenten används Python-biblioteket Nipype Neuroimaging för automatisering av hela processen. Registrering, parcellering och spårning gjordes med hjälp av MRtrix och FSL, dessutom användes DIPY och NiBabel för traktogrambehandling. Slutligen utfördes filtrering baserat på kod från författarna till FINTA och grafmått beräknades med hjälp av NetworkX Python-bibliotek. Experimenten utfördes på råa och viktade strukturella konnektivitetsmatriser. Resultaten tyder på att filtrering har en effekt på grafmått som klustringskoefficient och betweenness centrality för olika noder som motsvarar hjärnregioner.
|
2 |
The Social Connectome – Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective NeuroscienceMaliske, Lara, Kanske, Philipp 22 May 2024 (has links)
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
|
Page generated in 0.0253 seconds