• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 31
  • 9
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 134
  • 40
  • 35
  • 33
  • 33
  • 29
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Principe des méthodes de Runge et Kutta à pas liés

Siret, Yvon 01 June 1962 (has links) (PDF)
.
22

Geometrically nonlinear behavior of a beam-rigid bar system

Antonas, Nicholas John January 1981 (has links)
No description available.
23

Large deflection analysis of a circular plate with a concentrically supporting overhang

Zabad, Ibrahim Abdul-Jabbar January 1981 (has links)
No description available.
24

Runge-Kutta methods for stochastic differential equations

Burrage, Pamela Marion Unknown Date (has links)
In this thesis, high order stochastic Runge-Kutta methods are developed for the numerical solution of (Stratonvich) stochastic differential equations and numerical results are presented. The problems associated with non-communativity of stochastic differential equation systems are addressed and stochastic Runge-Kutta methods particularly suited for such systems are derived. The thesis concludes with a discussion on various implementation issues, along with numerical results from variable stepsize implementation of a stochastic embedded pair of Runge-Kutta methods.
25

Die Runge-Kutta-Discontinuous-Galerkin-Methode zur Lösung konvektionsdominierter tiefengemittelter Flachwasserprobleme

Schwanenberg, Dirk. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
26

Experimental Investigation of the Lift Frequency Response and Trailing-Edge Flow Physics of a Surging Airfoil

Zhu, Wenbo January 2021 (has links)
No description available.
27

Very High-Order A-stable Stiffly Accurate Diagonally Implicit Runge-Kutta Methods with Error Estimators

Alamri, Yousef 24 July 2023 (has links)
A numerical search approach is used to design high-order diagonally implicit Runge-Kutta (DIRK) schemes equipped with embedded error estimators, some of which have identical diagonal elements (SDIRK) and explicit first stage (ESDIRK). In each of these classes, we present new A-stable schemes of orders six (the highest order of previously known A-stable DIRK-type schemes) up to order eight. For each order, we include one scheme that is only A-stable as well as one that is stiffly accurate and/or L-stable. The latter require more stages but give better results for highly stiff problems and differential-algebraic equations (DAEs). The development of the eighth-order schemes requires, in addition to imposing A-stability, finding highly accurate numerical solutions for a system of 200 equations in over 100 variables, which is accomplished via a combination of global and local optimization strategies. The accuracy, stability, and efficiency of the schemes are demonstrated on diverse problems.
28

Stability Analysis of Implicit-Explicit Runge-Kutta Discontinous Galerkin Methods for Convection-Dispersion Equations

Hunter, Joseph William January 2021 (has links)
No description available.
29

Solution of the ideal adiabatic stirling model with coupled first order differential equations by the Pasic method

Malroy, Eric Thomas January 1998 (has links)
No description available.
30

Multimethods for the Efficient Solution of Multiscale Differential Equations

Roberts, Steven Byram 30 August 2021 (has links)
Mathematical models involving ordinary differential equations (ODEs) play a critical role in scientific and engineering applications. Advances in computing hardware and numerical methods have allowed these models to become larger and more sophisticated. Increasingly, problems can be described as multiphysics and multiscale as they combine several different physical processes with different characteristics. If just one part of an ODE is stiff, nonlinear, chaotic, or rapidly-evolving, this can force an expensive method or a small timestep to be used. A method which applies a discretization and timestep uniformly across a multiphysics problem poorly utilizes computational resources and can be prohibitively expensive. The focus of this dissertation is on "multimethods" which apply different methods to different partitions of an ODE. Well-designed multimethods can drastically reduce the computation costs by matching methods to the individual characteristics of each partition while making minimal concessions to stability and accuracy. However, they are not without their limitations. High order methods are difficult to derive and may suffer from order reduction. Also, the stability of multimethods is difficult to characterize and analyze. The goals of this work are to develop new, practical multimethods and to address these issues. First, new implicit multirate Runge–Kutta methods are analyzed with a special focus on stability. This is extended into implicit multirate infinitesimal methods. We introduce approaches for constructing implicit-explicit methods based on Runge–Kutta and general linear methods. Finally, some unique applications of multimethods are considered including using surrogate models to accelerate Runge–Kutta methods and eliminating order reduction on linear ODEs with time-dependent forcing. / Doctor of Philosophy / Almost all time-dependent physical phenomena can be effectively described via ordinary differential equations. This includes chemical reactions, the motion of a pendulum, the propagation of an electric signal through a circuit, and fluid dynamics. In general, it is not possible to find closed-form solutions to differential equations. Instead, time integration methods can be employed to numerically approximate the solution through an iterative procedure. Time integration methods are of great practical interest to scientific and engineering applications because computational modeling is often much cheaper and more flexible than constructing physical models for testing. Large-scale, complex systems frequently combine several coupled processes with vastly different characteristics. Consider a car where the tires spin at several hundred revolutions per minute, while the suspension has oscillatory dynamics that is orders of magnitude slower. The brake pads undergo periods of slow cooling, then sudden, rapid heating. When using a time integration scheme for such a simulation, the fastest dynamics require an expensive and small timestep that is applied globally across all aspects of the simulation. In turn, an unnecessarily large amount of work is done to resolve the slow dynamics. The goal of this dissertation is to explore new "multimethods" for solving differential equations where a single time integration method using a single, global timestep is inadequate. Multimethods combine together existing time integration schemes in a way that is better tailored to the properties of the problem while maintaining desirable accuracy and stability properties. This work seeks to overcome limitations on current multimethods, further the understanding of their stability, present new applications, and most importantly, develop methods with improved efficiency.

Page generated in 0.1025 seconds