• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-device synthesis of customized carbon nanotube structures

Pitkänen, O. (Olli) 19 July 2019 (has links)
Abstract Carbon nanotubes (CNTs) are known for their excellent mechanical, electrical and thermal properties, that have fostered a vast number of applications during the last two decades, from composites, electrodes and nanoelectonics components, to sensors and biological scaffolds. Direct integration of CNTs into devices is not straightforward, as high growth temperatures (above 600 °C) challenge the chemical and thermal stability of substrates, catalysts and other nearby materials or components. However, by decreasing growth temperature and/or working out protocols that take into account the thermal stability of the materials involved, it is possible to create several new types of architectures and devices with functionalities not shown before. In this work, we show that, with selection of the appropriate substrate, diffusion barrier and catalyst materials, direct growth of functional CNT films and their micropatterns may be achieved, not only on Si chips, but also on other atypical surfaces, using chemical vapor deposition. This thesis explores low-temperature CNT synthesis over bi- and trimetallic catalysts, and investigates the effect of diffusion barrier layers on the electrical properties of substrate-to-CNT contacts. On one hand, the lowest achieved CNT synthesis temperature (400 °C) is compatible with most silicon technologies, thus enabling direct integration of CNTs with materials and devices with low thermal budgets. On the other hand, the results of diffusion barrier studies helped us in designing and demonstrating on-chip micropatterned CNT structures for super and pseudocapacitor electrodes. In addition, we also show a method for maskless growth of CNT micropatterns using laser-treated steel and superalloy surfaces, whose surface diffusion properties change as a result of barrier-type metal oxide formation. Furthermore, we present CNT growth on carbon materials and demonstrate entirely carbon-based hierarchical composites for electromagnetic interference shielding applications, exhibiting outstanding absorption-based shielding performance. The results presented in this thesis are expected to contribute to a further expansion of CNT-based technologies, in particular with potential for future advances in high-frequency devices (arrays, amplifiers and shielding materials), energy materials (electrodes and scaffolds), as well as in nanoelectromechanical systems (sensors and actuators). / Tiivistelmä Hiilinanoputket tunnetaan niiden erinomaisista mekaanisista, sähköisistä ja termisistä ominaisuuksista, joita on hyödynnetty lukuisissa sovelluksissa viimeisen kahden vuosikymmenen aikana alkaen komposiiteista, elektrodeista, nanoelektroniikkakomponenteista ja sensoreista aina biologisiin tukirakenteisiin. Nanoputkien synteesi suoraan laitteessa ei ole suoraviivaista, sillä korkeat, yli 600 °C synteesilämpötilat asettavat haasteita substraatin, katalyytin sekä muiden lähellä olevien materiaalien ja komponenttien kemialliselle ja termiselle vakaudelle. Alentamalla synteesilämpötilaa ja/tai kehittämällä termisen vakauden huomioivia menetelmiä on mahdollista luoda uudenlaisia arkkitehtuureja ja sovelluksia ennennäkemättömillä ominaisuuksilla. Tässä työssä osoitetaan, että sopivan substraatin, diffuusiosuojan ja katalyyttimateriaalin valitsemalla funktionaalisten hiilinanoputkien synteesi on mahdollista piin lisäksi myös muille, epätavallisille pinnoille käyttäen kemiallista kaasufaasipinnoitusta. Väitöstyössä käsitellään hiilinanoputkien matalan lämpötilan synteesiä hyödyntäen kaksi- ja kolmimetallisia katalyyttejä sekä tutkitaan diffuusiosuojakerroksen sähköistä vaikutusta substraatin ja hiilinanoputkien väliseen kontaktiin. Alin saavutettu synteesilämpötila (400 °C) on yhteensopiva useimpien piiteknologioiden kanssa, mikä mahdollistaa nanoputkien suoran integroinnin matalaa lämpötilaa edellyttäville materiaaleille. Työssä tutkitun diffuusiosuojakerroksen kehitys mahdollisti myös piisirun päälle toteutettujen hiilinanoputkipohjaisten super- ja pseudokondensaattorielektrodien demonstroinnin. Lisäksi työssä esitetään menetelmä, jossa laserkäsittelemällä teräs- ja supermetalliseospinta, jonka avulla mikrokuvioitu hiilinanoputkien kasvu ilman litografiaprosessia on mahdollista. Viimeisenä työssä esitetään hiilinanoputkien synteesi suoraan toiselle hiilimateriaalille ja demonstroidaan täysin hiilipohjainen, hierarkkinen komposiittimateriaali erinomaisella absorptioon perustuvalla suojauskyvyllä sähkömagneettisiin häiriösuojaussovelluksiin. Väitöstyössä esitettyjen tulosten odotetaan osaltaan edistävän hiilinanoputkipohjaisten teknologioiden kehitystä erityisesti korkean taajuuden laitteissa, energiamateriaaleissa sekä nanosähkömekaanisissa järjestelmissä.
2

Ultra-low sintering temperature glass ceramic compositions based on bismuth-zinc borosilicate glass

Chen, M.-Y. (Mei-Yu) 06 June 2017 (has links)
Abstract In the first part of the thesis, novel glass-ceramic compositions based on Al2O3 and BaTiO3 and bismuth-zinc borosilicate (BBSZ) glass, sintered at ultra-low temperatures, were researched. With adequate glass concentration, dense microstructures and useful dielectric properties were achieved. The composite of BaTiO3 with 70 wt % BBSZ sintered at 450 °C exhibited the highest relative permittivity, εr, of 132 and 207 at 100 kHz and 100 MHz, respectively. Thus, the dielectric properties of the composites were dominated by the characteristics of glass, BaTiO3, and Bi24Si2O40 phase, especially the contribution of Bi24Si2O40 for the samples with 70-90 wt % glass. Actually, the existence of the secondary phase Bi24Si2O40 may not hinder but enhance the dielectric properties. The Al2O3-BBSZ composition samples showed a similar situation, not only for densification but also for their microstructures and phases (Al2O3, BBSZ, Bi24Si2O40), explaining the achieved dielectric properties. The second part of the thesis mainly discusses the composite of BaTiO3 with 50 wt % BBSZ with different thermal treatments. After sintering at 720 °C, dense microstructures and the existence of Bi4BaTi4O15, BaTiO3, Bi24Si2O40 phases were observed. The results also showed that the size of glass powder particles did not influence the dielectric properties (εr = 263-267, tan δ = 0.013 at 100 kHz) of sintered samples, but the addition of LiF degraded the dielectric properties due to the features and amount of Bi4BaTi4O15. These results demonstrate the feasibility of the BBSZ based composites for higher sintering temperature technologies as well. At the end, a novel binder system, which enables low sintering temperatures close to 300 °C, was developed. A dielectric multilayer module containing BaTiO3-BBSZ and Al2O3-BBSZ composites with silver electrodes was co-fired at 450 °C without observable cracks and diffusions. These results indicate that these glass-ceramic composites provide a new horizon to fabricate environmentally friendly ULTCC materials, as well as multilayers for multimaterial 3D electronics packages and high frequency devices. / Tiivistelmä Väitöstyön ensimmäisessä osassa tutkittiin ja kehitettiin uudentyyppisiä, ultramatalissa sintrauslämpötiloissa (ULTCC) valmistettuja lasi-keraami komposiitteja käyttäen vismuttisinkkiborosilikaatti -pohjaista lasia (BBSZ). Täyteaineina olivat alumiinioksidi (Al2O3) ja bariumtitanaatti (BaTiO3). Materiaaleille saatiin riittävän suuren lasipitoisuuden avulla tiheät mikrorakenteet ja sovelluskelpoiset dielektriset ominaisuudet. BaTiO3:n komposiitti, joka sisälsi 70 p-% BBSZ lasia, saavutti 450 °C lämpötilassa sintrattuna korkeimman suhteellisen permittiivisyyden: εr=132 (@100 kHz) ja εr=207 (@100 MHz). Komposiittien dielektrisiä ominaisuuksia määrittivät tällöin lasi-, BaTiO3- ja Bi24Si2O40- faasien ominaisuudet ja erityisesti Bi24Si2O40 -faasi näytteissä, joissa on 70-90 p-% lasia. Sekundäärinen faasi Bi24Si2O40 ei välttämättä heikentänyt, vaan jopa paransi dielektrisiä ominaisuuksia. Vastaavilla Al2O3-BBSZ –komposiiteilla saavutettiin samanlaisia tuloksia tihentymisen, mikrorakenteiden ja faasien (Al2O3, BBSZ, Bi24Si2O40) suhteen. Lisäksi tässä tapauksessa saavutetut dielektriset ominaisuudet voidaan selittää näiden kolmen faasin yhdistelmän olemassaololla. Väitöstyön toinen osa käsitteli pääasiassa eritavoin lämpökäsiteltyjä BaTiO3:n komposiitteja, joissa on 50 p-% BBSZ-lasia. Näillä saavutettiin tiheä mikrorakenne sintrattaessa 720 °C lämpötilassa ja havaitiin Bi4BaTi4O15-, Bi24Si2O40-faasien muodostuminen BaTiO3 lähtöfaasin rinnalle. Tulokset osoittivat myös, että lasijauheen partikkelikoko ei vaikuttanut sintrattujen näytteiden dielektrisiin ominaisuuksiin (εr = 263-267, tan δ = 0.013 (@100 kHz)). LiF -lisäys sen sijaan heikensi dielektrisiä ominaisuuksia ja vähensi Bi4BaTi4O15 faasin muodostumista. Tämä aiheutui Bi4BaTi4O15-faasin ominaisuuksista ja oli riippuvainen kyseisen faasin määrästä. Nämä tulokset osoittivat BBSZ -pohjaisten komposiittien käytettävyyden myös korkeampien sintrauslämpötilojen teknologioihin. Viimeisenä kehitettiin uudentyyppinen sideainesysteemi, joka mahdollistaa ultramatalien keraamien yhteissintraamisen jopa noin 300 °C lämpötilassa. Hyödyntäen kehitettyä sideainesysteemiä monikerrosrakenne, jossa käytettiin dielektrisiä BaTiO3-BBSZ- ja Al2O3-BBSZ-komposiitteja ja hopeaelektrodeja, yhteissintrattiin 450 °C lämpötilassa. Valmistetuissa rakenteissa ei havaittu murtumia eikä diffuusioita. Tulokset osoittavat, että kehitetyt lasi-keraami komposiitit mahdollistavat ympäristöystävällisten ULTCC -materiaalien valmistuksen. Lisäksi osoitettiin kehitettyjen materiaalien soveltuvuus monikerroksisten rakenteiden käyttöön monimateriaali-3D-elektroniikan pakkauksissa ja suurtaajuuskomponteissa.

Page generated in 0.048 seconds