• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • Tagged with
  • 15
  • 15
  • 15
  • 14
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Lógicas probabilísticas com relações de independência: representação de conhecimento e aprendizado de máquina. / Probabilistic logics with independence relationships: knowledge representation and machine learning.

José Eduardo Ochoa Luna 17 May 2011 (has links)
A combinação de lógica e probabilidade (lógicas probabilísticas) tem sido um tópico bastante estudado nas últimas décadas. A maioria de propostas para estes formalismos pressupõem que tanto as sentenças lógicas como as probabilidades sejam especificadas por especialistas. Entretanto, a crescente disponibilidade de dados relacionais sugere o uso de técnicas de aprendizado de máquina para produzir sentenças lógicas e estimar probabilidades. Este trabalho apresenta contribuições em termos de representação de conhecimento e aprendizado. Primeiro, uma linguagem lógica probabilística de primeira ordem é proposta. Em seguida, três algoritmos de aprendizado de lógica de descrição probabilística crALC são apresentados: um algoritmo probabilístico com ênfase na indução de sentenças baseada em classificadores Noisy-OR; um algoritmo que foca na indução de inclusões probabilísticas (componente probabilístico de crALC); um algoritmo de natureza probabilística que induz sentenças lógicas ou inclusões probabilísticas. As propostas de aprendizado são avaliadas em termos de acurácia em duas tarefas: no aprendizado de lógicas de descrição e no aprendizado de terminologias probabilísticas em crALC. Adicionalmente, são discutidas aplicações destes algoritmos em processos de recuperação de informação: duas abordagens para extensão semântica de consultas na Web usando ontologias probabilísticas são discutidas. / The combination of logic and probabilities (probabilistic logics) is a topic that has been extensively explored in past decades. The majority of work in probabilistic logics assumes that both logical sentences and probabilities are specified by experts. As relational data is increasingly available, machine learning algorithms have been used to induce both logical sentences and probabilities. This work contributes in knowledge representation and learning. First, a rst-order probabilistic logic is proposed. Then, three algorithms for learning probabilistic description logic crALC are given: a probabilistic algorithm focused on learning logical sentences and based on Noisy-OR classiers; an algorithm that aims at learning probabilistic inclusions (probabilistic component of crALC) and; an algorithm that using a probabilistic setting, induces either logical sentences or probabilistic inclusions. Evaluation of these proposals has been performed in two situations: by measuring learning accuracy of both description logics and probabilistic terminologies. In addition, these learning algorithms have been applied to information retrieval processes: two approaches for semantic query extension through probabilistic ontologies are discussed.
12

Interpretação de imagens com raciocínio espacial qualitativo probabilístico. / Probabilistic qualitative spatial reasoning for image interpretation.

Valquiria Fenelon Pereira 27 February 2014 (has links)
Um sistema artificial pode usar raciocínio espacial qualitativo para inferir informações sobre seu ambiente tridimensional a partir de imagens bidimensionais. Inferências realizadas com base em raciocínio espacial qualitativo devem ser capazes de lidar com incertezas. Neste trabalho investigamos a utilização de técnicas probabilísticas para tornar o raciocínio espacial qualitativo mais robusto a incertezas e aplicável a agentes móveis em ambientes reais. Investigamos uma formalização de raciocínio espacial com lógica de descrição probabilística em um subdomínio de tráfego. Desenvolvemos também um método que combina raciocínio espacial qualitativo com um filtro Bayesiano para desenvolver dois sistemas que foram aplicados na auto localização de um robô móvel. Executamos dois experimentos de auto localização; um utilizando a teoria de relações qualitativas percebíveis sobre sombra com filtro Bayesiano; e outro utilizando o cálculo de oclusão de regiões e o cálculo de direção com filtro Bayesiano. Ambos os sistemas obtiveram resultados positivos onde somente o raciocínio espacial qualitativo não foi capaz de inferir a localização do robô. Os experimentos com dados reais mostraram robustez aos ruídos e à informação parcial. / An artificial system can use qualitative spatial reasoning to obtain information about its tridimensional environment, from bi-dimensional images. Inferences produced by qualitative spatial reasoning must be able to deal with uncertainty. This work investigates the use of probabilistic techniques to make qualitative spatial reasoning more robust against uncertainty, and better applicable to mobile agents in real environments. The work investigates a formalization of spatial reasoning using probabilistic description logics in a traffic domain. Additionally, a method is presented that combines qualitative spatial reasoning with a Bayesian filter, to develop two systems that are applied to self-localization of mobile robots. Two experiments are described; one using the theory of perceptual qualitative relations about shadows; the other using occlusion calculus and direction calculus. Both systems are combined with a Bayesian filter producing positive results in situations where qualitative spatial reasoning alone cannot infer robot location. Experiments with real data show robustness to noise and partial information.
13

Independência parcial no problema da satisfazibilidade probabilística / Partial Independence in the Probabilistic Satisfiability Problem

Eduardo Menezes de Morais 20 April 2018 (has links)
O problema da Satisfazibilidade Probabilística, PSAT, apesar da sua flexibilidade, torna exponencialmente complexa a modelagem de variáveis estatisticamente independentes. Esta tese busca desenvolver algoritmos e propostas de relaxamento para permitir o tratamento eficiente de independência parcial pelo PSAT. Apresentamos uma aplicação do PSAT ao problema da etiquetagem morfossintática que serve tanto de motivação como de demonstração dos conceitos apresentados. / The Probabilistic Satisfiability Problem, PSAT, despite its flexibility, makes it exponentially complicated to model statistically independent variables. This thesis develops algorithms and relaxation proposals that allow an efficient treatment of partial independence with PSAT. We also present an application of PSAT on the Part-of-speech tagging problem to serve both as motivation and showcase of the presented concepts.
14

Answer set programming probabilístico / Probabilistic Answer Set Programming

Morais, Eduardo Menezes de 10 December 2012 (has links)
Este trabalho introduz uma técnica chamada Answer Set Programming Probabilístico (PASP), que permite a modelagem de teorias complexas e a verificação de sua consistência em relação a um conjunto de dados estatísticos. Propomos métodos de resolução baseados em uma redução para o problema da satisfazibilidade probabilística (PSAT) e um método de redução de Turing ao ASP. / This dissertation introduces a technique called Probabilistic Answer Set Programming (PASP), that allows modeling complex theories and check its consistence with respect to a set of statistical data. We propose a method of resolution based in the reduction to the probabilistic satisfiability problem (PSAT) and a Turing reduction method to ASP.
15

Answer set programming probabilístico / Probabilistic Answer Set Programming

Eduardo Menezes de Morais 10 December 2012 (has links)
Este trabalho introduz uma técnica chamada Answer Set Programming Probabilístico (PASP), que permite a modelagem de teorias complexas e a verificação de sua consistência em relação a um conjunto de dados estatísticos. Propomos métodos de resolução baseados em uma redução para o problema da satisfazibilidade probabilística (PSAT) e um método de redução de Turing ao ASP. / This dissertation introduces a technique called Probabilistic Answer Set Programming (PASP), that allows modeling complex theories and check its consistence with respect to a set of statistical data. We propose a method of resolution based in the reduction to the probabilistic satisfiability problem (PSAT) and a Turing reduction method to ASP.

Page generated in 0.0581 seconds