1 |
Receptivity Studies on a Swept-Wing ModelWoodruff, Matthew Jeffery 2011 May 1900 (has links)
A series of flight tests was performed using a swept-wing model mounted on a Cessna O-2 aircraft. The crossflow waves on the airfoil were excited by pneumatic spanwise-periodic distributed roughness elements (DREs). The objective of the experiment was to determine the roughness receptivity i.e. the relationship between roughness height and the amplitude of the unstable crossflow wave. The local skin-friction variation was measured using an array of calibrated and temperature-compensated hotfilm sensors. The amplitudes of the disturbance shear stress were compared to the amplitudes of the DREs. It was found that there is a relationship between the shear stress and DRE amplitude that needs to be studied more before any definitely conclusions can be made. It was also found that the sensitivity of the crossflow to DREs is highly dependent on the freestream turbulence levels.
|
2 |
The Later Stages of Transition over a NACA0018 Airfoil at a Low Reynolds NumberKirk, Thomas January 2014 (has links)
The later stages of separated shear layer transition within separation bubbles developing over a NACA0018 airfoil operating at a chord Reynolds number of 105 and at angles of attack of 0, 5, 8, and 10 degrees were investigated experimentally in a wind tunnel. Several experimental tools, including a rake of six boundary-layer hot-wire anemometers, were used to perform measurements over the model.
Novel high-speed flow visualization performed with a smoke-wire placed within the separated shear layer showed that roll-up vortices are shed within separation bubbles forming on the suction side of the airfoil. The structures were found to convect downstream and eventually break down during laminar-to-turbulent transition. Top view visualizations revealed that, at angles of attack of 0, 5, and 8 degrees, roll-up vortices form coherently across the span and undergo significant spanwise deformations prior to breaking down. At angles of attack of 5 and 8 degrees, rows of streamwise-oriented structures were observed to form during vortex breakdown.
Statistics regarding the formation and development of shear layer roll-up vortices were extracted from high-speed flow visualization sequences and compared to the results of boundary layer measurements. It was found that, on the average, roll-up vortices form following the initial exponential growth of unstable disturbances within the separated shear layer and initiate the later stages of transition. The onset of these nonlinear stages was found to occur when the amplitude of velocity disturbances reached approximately 10% of the free-stream velocity. The rate of vortex shedding was found to fall within the frequency band of the unstable disturbances and lie near the central frequency of this band. The formation of vortices has been linked to the generation of harmonics of these unstable disturbances in velocity signals acquired ahead of mean transition. Once shed, vortices were found to drift at speeds between 33% and 44% of the edge velocity.
Vortex merging at an angle of attack of 5?? was investigated. It was found that the majority of roll-up vortices proceed to merge with either one or two other vortices. Vortex merging between two and three vortices was found to occur periodically in a process similar to vortex merging in plane mixing layers undergoing subharmonic forcing of the most amplified disturbance.
The flapping motion of the separated shear layer was investigated by performing a cross-correlation analysis on the high-speed flow visualization sequences to extract vertical displacement signals of the smoke within the shear layer. The frequency of flapping was found to correspond to the unstable disturbance band. At an angle of attack of 5??, it was found that the separated shear layer has a low-frequency component of flapping that matches a strong peak in velocity and surface pressure spectra that lies outside the unstable disturbance frequency band.
The spanwise development of disturbances was assessed in the aft portion of the separation bubbles by performing a cross-correlation analysis on signals acquired simultaneously across the span with the rake of hot-wires. The spanwise correlations between signals was found to be well-correlated ahead of shear layer roll-up, after which disturbances became rapidly uncorrelated ahead of mean reattachment. These results were found to be linked to the coherent roll-up and subsequent breakdown of roll-up vortices.
|
3 |
Unsteady Total Pressure Measurement for Laminar-to-Turbulent Transition DetectionKarasawa, Akane Sharon 01 August 2011 (has links) (PDF)
This thesis presents the use of an unsteady total pressure measurement to detect laminar-to-turbulent transition. A miniature dynamic pressure transducer, Kulite model XCS-062-5D, was utilized to measure the total pressure fluctuations, and was integrated with an autonomous boundary layer measurement device that can withstand flight test conditions. Various sensor-probe configurations of the Kulite pressure transducer were first examined in a wind tunnel with a 0.610 m (2.0 ft) square test section with a maximum operational velocity of 49.2 m/s (110 mph), corresponding dynamic pressure of 1.44 kPa (30 psf). The Kulite sensor was placed on an elliptical nose flat plate where the flow was known to be turbulent. The Kulite sensor was then evaluated to measure total pressure fluctuations in laminar, turbulent, and transition of boundary layers developed on the flat plate in the same wind tunnel. The root-mean-square value of total pressure fluctuations was less than 1 % of the local free-stream dynamic pressure in the laminar boundary layer, but was about 2 % in the turbulent boundary layer. The value increased to 4 % in transition, indicating that the total pressure fluctuation measurements can be used not only to distinguish the laminar boundary layer from the turbulent boundary layer, but also to identify the transition region. The unsteady total pressure measurement was also conducted in a with a 2.13 m (7.0 ft) by 3.05 m (10.0 ft) section with similar operational velocity range as the previous wind tunnel. The Kulite sensor was placed on a wing model under laminar and transition conditions. The testing yielded similar results, demonstrating the usefulness of total pressure measurement for identifying the laminar-to-turbulent transition.
|
4 |
Roughness Induced TransitionErgin, Fahrettin Gökhan 01 August 2005 (has links)
No description available.
|
5 |
An Examination of Configurations for Using Infrared to Measure Boundary Layer TransitionFreels, Justin Reed 2012 August 1900 (has links)
Infrared transition location estimates can be fast and useful measurements in wind tunnel and flight tests. Because turbulent boundary layers have a much higher rate of convective heat transfer than laminar boundary layers, a difference in surface temperature can be observed between turbulent and laminar regions of an airfoil at a different temperature than the free stream air temperature. Various implementations of this technique are examined in a wind tunnel. These include using a heat lamp as an external source and circulating fluid inside of the airfoil. Furthermore, ABS plastic and aluminum airfoils are tested with and without coatings such as black paint and surface wraps. The results show that thermal conduction within the model and surface reflections are the driving issues in designing an IR system for detecting transition. Aluminum has a high thermal diffusivity so is a poor choice for this method. However, its performance can be improved using an insulating layer. Internal fluid circulation was far more successful than the heat lamp because it eliminates the reflected IR due to the heat lamp. However, using smooth surface wraps can mitigate reflection issues caused by the heat lamps by reducing the scatter within the reflection, producing an IR image with fewer contaminating reflections.
|
6 |
Boundary layer streaks as a novel laminar flow control methodSattarzadeh Shirvan, Sohrab January 2016 (has links)
A novel laminar flow control based on generation of spanwise mean velocity gradients (SVG) in a flat plate boundary layer is investigated where disturbances of different types are introduced in the wall-bounded shear layer. The experimental investigations are aimed at; (i) generating stable and steady streamwise streaks in the boundary layer which set up spanwise gradients in the mean flow, and (ii) attenuating disturbance energy growth in the streaky boundary layers and hence delaying the onset of turbulence transition. The streamwise streaks generated by four different methods are investigated, which are spanwise arrays of triangular/rectangular miniature vortex generators (MVGs) and roughness elements, non-linear pair of oblique waves, and spanwise-periodic finite discrete suction. For all the investigated methods the boundary layer is modulated into regions of high- and low speed streaks through formation of pairs of counter-rotating streamwise vortices. For the streaky boundary layers generated by the MVGs a parameter study on a wide range of MVG configurations is performed in order to investigate the transient growth of the streaks. A general scaling of the streak amplitudes is found based on empiricism where an integral amplitude definition is proposed for the streaks. The disturbances are introduced as single- and broad band frequency twodimensional Tollmien–Schlichting (TS) waves, and three-dimensional single and a pair of oblique waves. In an attempt to obtain a more realistic configuration compared to previous investigations the disturbances are introduced upstream of the location were streaks are generated. It is shown that the SVG method is efficient in attenuating the growth of disturbance amplitudes in the linear regime for a wide range of frequencies although the disturbances have an initial amplitude response to the generation of the streaks. The attenuation rate of the disturbance amplitude is found to be optimized for an integral streak amplitude of 30% of the free-stream velocity which takes into account the periodic wavelength of the streaky base flow. The stabilizing effect of the streamwise streaks can be extended to the nonlinear regime of disturbances which in turn results in transition to turbulence delay. This results in significant drag reduction when comparing the skin friction coefficient of a laminar- to a turbulent boundary layer. It is also shown that consecutive turbulence transition delay can be obtained by reinforcing the streaky boundary layer in the streamwise direction. For the streaky boundary layer generated by pair of oblique waves their forcing frequency sets the upper limit for the frequency of disturbances beyond which the control fails. / <p>QC 20160208</p>
|
7 |
Development of an Autonomous Single-Point Calibration for a Constant Voltage Hot-Wire AnemometerMurphy, Ryan 01 March 2015 (has links) (PDF)
Traditionally, the measurement of turbulence has been conducted using hot-wire anemometry. This thesis presents the implementation of a constant voltage hot-wire anemometer for use with the Boundary Layer Data System (BLDS). A hot-wire calibration apparatus has been developed that is capable of operation inside a vacuum chamber and flow speeds up to 50 m/s. Hot-wires operated with a constant-voltage anemometer (CVA) were calibrated at absolute static pressures down to 26 kPa. A thermal/electrical model for a hot-wire and the CVA circuit successfully predicted the measured CVA output voltage trend at reduced pressure environments; however, better results were obtained when the Nusselt number was increased. A calibration approach that required only one measured flow speed was developed to allow autonomous calibrations of a CVA hot-wire. The single-point calibration approach was evaluated through comparison with the experimental data from the vacuum chamber over a range of 14-50 m/s and at pressures from 26 to 100 kPa. The thermal-electrical model was used to make predictions of CVA output voltage and the corresponding flow speed for conditions that could not be replicated within a laboratory. The first set of predictions were made for conditions from 7.5 to 100 kPa, at a constant temperature of 25⁰C, within a flight speed range of 40 to 150 m/s. Single-point calibrations were developed from these predictions. Additionally, the thermal-electrical model was used to predict hot-wire response for a change in temperature of 25⁰C at 26 kPa and the single-point calibration developed for the pressure range 7.5 to 100 kPa was tested for its ability to adjust. The temperature variation at a single pressure of 26 kPa proved that the single-point function was capable of adapting to off-standard temperatures with the largest deviations of +/- 7% in the mid-range velocities. With a temperature drop, the deviations were below 5%. The second set of thermal-electrical predictions involved conditions for altitude from 0 to 18 km at flow speeds from 40 to 150 m/s. A single-point calibration was developed for altitude conditions. Furthermore, to test the single-point calibration the thermal-electrical model was used to predict hot-re response for a temperature variation of 25⁰C at 18 km. The single-point calibration developed for altitude proved that it was capable of adjusting to a temperature variation of 25⁰C with maximum deviations of about 5% at mid-range velocities. It is proposed that the single-point calibration approach could be employed for CVA measurements with the Boundary Layer Data System (BLDS) to allow hot-wire data to be acquired autonomously during flight tests.
|
8 |
Numerical Characterization of Turbulence-driven Secondary Motions in Fully-developed Single-phase and Stratified Flow in Rectangular DuctsJana Maiti, Chandrima January 2021 (has links)
No description available.
|
9 |
Experimental Investigation of Transition over a NACA 0018 Airfoil at a Low Reynolds NumberBoutilier, Michael Stephen Hatcher January 2011 (has links)
Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100,000 was investigated experimentally. The effects of experimental setup and analysis tools on the results were also examined.
The sensitivity of linear stability predictions for measured separated shear layer velocity profiles to both the analysis approach and experimental data scatter was evaluated. Analysis approaches that are relatively insensitive to experimental data scatter were identified. Stability predictions were shown to be more sensitive to the analysis approach than to experimental data scatter, with differences in the predicted maximum disturbance growth rate and corresponding frequency of approximately 35% between approaches.
A parametric study on the effects of experimental setup on low Reynolds number airfoil experiments was completed. It was found that measured lift forces and vortex shedding frequencies were affected by the end plate configuration. It was concluded that the ratio of end plate spacing to projected model height should be at least seven, consistent with the guideline for circular cylinders. Measurements before and after test section wall streamlining revealed errors in lift coefficients due to blockage as high as 9% and errors in the wake vortex shedding frequency of 3.5%.
Shear layer development over the model was investigated in detail. Flow visualization images linked an observed asymmetry in wake velocity profiles to pronounced vortex roll-up below the wake centerline. Linear stability predictions based on the mean hot-wire profiles were found to agree with measured disturbance growth rates, wave numbers, and streamwise velocity fluctuation profiles. Embedded surface pressure sensors were shown to provide reasonable estimates of disturbance growth rate, wave number, and convection speed for conditions at which a separation bubble formed on the airfoil surface. Convection speeds of between 30 and 50% of the edge velocity were measured, consistent with phase speed estimates from linear stability theory.
|
10 |
Experimental Investigation of Transition over a NACA 0018 Airfoil at a Low Reynolds NumberBoutilier, Michael Stephen Hatcher January 2011 (has links)
Shear layer development over a NACA 0018 airfoil at a chord Reynolds number of 100,000 was investigated experimentally. The effects of experimental setup and analysis tools on the results were also examined.
The sensitivity of linear stability predictions for measured separated shear layer velocity profiles to both the analysis approach and experimental data scatter was evaluated. Analysis approaches that are relatively insensitive to experimental data scatter were identified. Stability predictions were shown to be more sensitive to the analysis approach than to experimental data scatter, with differences in the predicted maximum disturbance growth rate and corresponding frequency of approximately 35% between approaches.
A parametric study on the effects of experimental setup on low Reynolds number airfoil experiments was completed. It was found that measured lift forces and vortex shedding frequencies were affected by the end plate configuration. It was concluded that the ratio of end plate spacing to projected model height should be at least seven, consistent with the guideline for circular cylinders. Measurements before and after test section wall streamlining revealed errors in lift coefficients due to blockage as high as 9% and errors in the wake vortex shedding frequency of 3.5%.
Shear layer development over the model was investigated in detail. Flow visualization images linked an observed asymmetry in wake velocity profiles to pronounced vortex roll-up below the wake centerline. Linear stability predictions based on the mean hot-wire profiles were found to agree with measured disturbance growth rates, wave numbers, and streamwise velocity fluctuation profiles. Embedded surface pressure sensors were shown to provide reasonable estimates of disturbance growth rate, wave number, and convection speed for conditions at which a separation bubble formed on the airfoil surface. Convection speeds of between 30 and 50% of the edge velocity were measured, consistent with phase speed estimates from linear stability theory.
|
Page generated in 0.1844 seconds