• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Studies of Spacecraft Plasma Interactions: Facility Characterization and Initial Measurements

Sawyer, Samuel Thomas 07 July 2009 (has links)
The objectives of this thesis are to characterize the plasma environment of a new vacuum chamber facility at Virginia Tech and to perform initial measurements of plasma flow field for studying spacecraft-plasma interactions using this facility. An argon plasma environment was created using a hot filament cathode plasma source. Flange plates attached to the sides of the vacuum chamber were modified in order to attach various feedthroughs both now and in the future such that a probe array DAQ system could be used to expedite measurement and analysis. A Langmuir probe array was used to measure 3-D plasma flow field in the chamber. A Matlab code was developed for automatic evaluation of the Langmuir probe traces. Two sets of measurements were preformed. The first measurement characterizes the plasma produced by the hot filament cathode in the chamber. Langmuir Probes were used to characterize the plasma environment yielding the following average characteristics: Plasma Potential = 5.5486V, Electron Saturation Current = 0.003421A, Electron Temperature = 1.505eV, and the Plasma Density = 6.806*10^14 m^-3. It was found that for both the spherical and cylindrical probes used in the test facility Rs > Debye length and thus were analyzed under the thin sheath condition. The second measurement attempts to measure the 3-D plasma flow field for plasma flow over a structure composed of 4-inch biased Al box sitting on a biased Al plate. The results show signs of the the generation of the expansion pre-sheath structure at the leading edge of the plate and the box upper surface predicted by numerical models. However, the current diagnostics system does not have the spatial resolution and range as well as the data accuracy required to reach a definitive measurement of plasma presheath and plasma wake. / Master of Science
2

Ionospheric Simulator (IonSim): Simulating Ionospheric conditions in a vacuum chamber

Dhar, Saurav 29 October 2013 (has links)
Understanding and improving ionospheric models is important for both military and civilian purposes. This understanding improves prediction of radio propagation used for communication and GPS navigation. Various space-borne instruments, such as retarding potential analyzers (RPAs) and ion traps are routinely flown in low earth orbit (LEO) to provide data for seeding/improve ionospheric models. This thesis describes and characterizes a new ion source that can be used to test and calibrate these space-borne instruments inside a laboratory vacuum chamber. Hot filaments are used to thermionically emit electrons inside the source. These electrons collisionally ionize neutral particles inside the source. Guided by ion-optics simulations, the ion and the electron trajectories inside the source are controlled to provide the required ion beams. A detailed description of the control electronics and the embedded controller for electron emission is discussed within. Using the custom made electronics, the source is able to provide an ion beam with current densities and mean energy comparable to the conditions in LEO. / Master of Science
3

Desenvolvimento experimental de uma camara para medida de emissão de eletrons por catodos frios / Development of a vacuum set-up for the measurement of cold cathode field electron emission

Amorim, Mauro Vanderlei de 13 December 2005 (has links)
Orientador: Vitor Baranauskas / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T07:59:42Z (GMT). No. of bitstreams: 1 Amorim_MauroVanderleide_M.pdf: 4658675 bytes, checksum: 1d0d3ce62cb40cd86d00a29631b96508 (MD5) Previous issue date: 2005 / Resumo: Foi desenvolvida uma câmara de vácuo para estudo das propriedades elétricas de emissão de elétrons por catodos frios de vários materiais de interesse tecnológico, por exemplo, diamante dopado, filmes de carbono diamantífero e silício. Na parte experimental realizamos um sistema de alto vácuo (bomba mecânica mais a bomba difusora), um sistema de posicionamento de 6 graus de liberdade e um sistema de medida da corrente de emissão de elétrons. A modelagem matemática da emissão foi baseada na teoria de Fowler ¿ Nordheim. Foram feitos os cálculos relativos às propriedades de vácuo do sistema utilizado e a seguir a caracterização de algumas amostras de estruturas nanométricas produzidas utilizando o processo de deposição química a partir da fase vapor do etanol (HFCVD) com altas concentrações de hélio e argônio / Abstract: A vacuum chamber was developed for study the physical properties of electron emission by cold cathodes of several materials of technological interest as for example, doped diamond, films of diamond-like carbon and silicon. In the experimental part we accomplished a system of high vacuum (mechanic and diffusion pumps), a positioning system of 6 degrees of freedom and a system to measure of the electron emission current. The mathematical modeling of the emission was based on the theory of Fowler - Nordheim. Relative calculation of the properties of vacuum in the used system was made to check the characterization of some samples of nanometric structures produced using the process of chemical deposition starting from the phase vapor of the ethanol (HFCVD) with high concentrations of helium and argon / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
4

Modification of a Ground Based Atomic Oxygen Simulation Apparatus to Accommodate Three Dimensional Specimens

Ward, Charles 01 June 2018 (has links)
The space environment presents various challenges when designing systems and selecting materials for applications beyond Earth’s atmosphere. For mission success, these challenges must be considered. One of the detrimental aspects of the space en- vironment is Atomic Oxygen, AO. Only present in harmful quantities in Lower Earth Orbit, LEO, AO causes significant damage to materials by breaking molecular bonds. California Polytechnic State University’s, Cal Poly’s, space environments laboratory features an apparatus capable of simulating this environment. Very thin or short samples were tested to observe the mass loss due to erosion of the sample material. Recent modifications to the system allow it to expose surfaces of three dimensional objects to AO rather than only those two dimensional objects. Simulating this effect on taller samples makes available the opportunity to test coupons that are then used in additional testing to measure the effect of that erosion on other properties. Challenges in adapting the AO system are explored and addressed, as well as some possible use cases for future work. As a use case, bending moment specimens were exposed to AO prior to testing in four point bending. Multiple regression models were constructed to determine variables contributing to slope changes between specimen pairs’ linear-elastic regions of force-displacement graphs. Results show that AO exposed specimens had significantly gentler slopes in the linear elastic region of the force-displacement curve, meaning that AO exposure reduced structural rigidity of the coupons.
5

Komora pro elektronové svařování / Working chamber of electron beam welder

Červinka, Petr January 2015 (has links)
The submitted work deals with the design of the working chamber of the electron beam welders. This vacuum chamber of the cubic shape, with a volume of approx. 100 litres will be used in the ÚPT of the AV ČR v.v.i. during building an experimental welding with electron gun performance 2 kW with accelerating voltage 60 kV. The theoretical part is about the theory of electron welding, electron beam welders of basic sections of the facility, and about possibilities of the technology for welding working chambers. In the practical part of the thesis is being thought out the design of the working chamber (construction chamber in design software), the strength test of construction chamber in the software ANSYS and the design of appropriate methods of welding. The sample of the material which is the stainless steel 17240, from which the chamber will be made, have been used in methods of welding TIG and MAG that was verified by the suitability of the chosen methods of welding.
6

INVESTIGATION OF ATOMIC MOTION IN OPTICAL LATTICES VIA INTENSITY CORRELATION MEASUREMENT

Agyare, Benjamin A. 06 August 2007 (has links)
No description available.
7

Experimental investigation of a vacuum apparatus for zebra mussel control in closed conduits

Bartrand, Timothy A. January 1997 (has links)
No description available.
8

Refurbished and 3D Modeled Thermal Vacuum Chamber

Glenn, Lauren M 01 May 2017 (has links)
Spacecraft testing includes acoustics, vibrations, and thermal vacuum. Cal Poly’s Space Environments Lab is equipped with multiple vacuum chambers, but no thermal vacuum chamber. The purpose of this thesis is to incorporate an ATS Chiller system with the HVEC vacuum chamber so students are able to experiment with a thermal vacuum chamber. The ATS Chiller had leaky pipes that needed to be refurbished and a shroud was implemented to improve thermal capabilities of the system. The full system was able to reach temperatures as low as -38ºC and as high as 58ºC at a pressure of 10-6 Torr. The ATS Chiller was able to absorb up to 500W of heat dissipation from a component mounted to the platen inside of the vacuum chamber. Thermal modeling of the apparatus was performed in Thermal Desktop. The model was incorporated with the test data to extract interface resistance information between connected surfaces. Another model is used to analyze a theoretical component inside the apparatus to evaluate mounting methods and determine theoretical temperatures of the component. The model adjusts for material properties, including thermal conductivity and emissivity to accurately simulate testing conditions within +/- 3ºC. Platen and shroud adjustments were able to accommodate a peak bake out temperature of 130±2.2℃ of any component without damage to the system. Three temperature cycles were performed by the thermal vacuum chamber to reach extreme temperatures of 58℃ and -38. A 300 Watt heater was used to simulate component heat dissipation for the duration of the test. Furthermore, this thesis lays out further possibilities for thermal testing using the HVEC Vacuum chamber and ATS chiller as a thermal vacuum chamber.
9

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DIFFUSER-EJECTOR SYSTEMS FOR QUALIFICATION OF ROCKET THRUSTERS AT SIMULATED ALTITUDES

Caglar Yilmaz (15346321) 24 April 2023 (has links)
<p>  </p> <p>High altitude test facilities are needed for ground testing of upper stage rocket engines or small satellite thrusters with high expansion ratio nozzles to ensure full-flowing nozzle conditions. Rocket exhaust diffusers and ejector systems are essential components of these facilities and are frequently used to set desired simulated altitude/low pressure conditions and pump out rocket exhaust products. </p> <p>This dissertation combined experimental and numerical efforts on diffuser-ejector systems. The experimental efforts included the development of a Second Throat Exhaust Diffuser (STED) to aid with the qualification of space thrusters in the Purdue Altitude Chamber Facility. While performing these experiments, we characterized the single and two-stage ejector systems operating in conjunction with the diffuser to obtain and maintain specific simulated altitudes. </p> <p>The concurrent numerical effort focused on validating a Computational Fluid Dynamics (CFD) approach based on Reynolds-averaged Navier–Stokes equations flow simulations. After validating the ejector CFD, we used it to derive a corrective coefficient of a lumped parameter ejector model (LPM) developed previously for the ejectors used in the Purdue Altitude Facility. We created variable coefficient maps for the stages of the two-stage ejector system using the same LPM and the test data from one of our experiments. </p> <p>We designed, manufactured, and then validated a STED for altitude testing of a ~50 lbf hypergolic hybrid motor as a part of a NASA JPL project. The designed STED enabled the operation of the hybrid motor for the full duration of the test firing (about 2 seconds) at a simulated altitude of 102,000 feet, slightly above the targeted altitude of 100,000 feet. We also validated our diffuser CFD approach by creating a simulation using the measured diffuser back pressure and the average motor chamber pressure. </p> <p>We then devised an experiment to investigate several diffuser–ejector system configurations using cold gas thrusters with conical and bell nozzles. The main aim of that experiment was to explore the effects of different thruster nozzle geometries, diffuser geometries, and thruster/ejector operational parameters on the performance of a diffuser–ejector system. For all the configurations tested, we reported on the minimum starting and operating pressure ratios and corresponding correction factors on the normal shock method. The large hysteresis regions obtained mostly with bell nozzles having a high initial expansion angle provided an opportunity to economize the facility resources. In some cases which were later found to violate STED second throat contraction limits, we experienced a choking flow at the second throat. Then, we studied the second throat contraction limits in detail using CFD in addition to the experimental data and explored minimum diffuser second throats enabling diffuser starting and improving aerodynamic efficiency. </p> <p>Finally, we machined a larger scale cold gas thruster with different nozzle geometries (having throat diameters in the range of 0.367 – 0.52 inches) from acrylic rods to study possible flow separation and gas condensation events that could occur during tests in the altitude chamber. The main difference here with the previous experiment was that the diffuser (JPL STED) was fixed, and the two-stage ejector system was used to create the necessary back pressure. With the experiments performed at varying axial gaps between the nozzle exit and diffuser inlet, we were able to investigate the effect of that on the diffuser performance. The experimental data collected in this work and the complementary numerical efforts served to generate the operating envelope of the Purdue Altitude Chamber Facility.  </p>
10

Development of an Autonomous Single-Point Calibration for a Constant Voltage Hot-Wire Anemometer

Murphy, Ryan 01 March 2015 (has links) (PDF)
Traditionally, the measurement of turbulence has been conducted using hot-wire anemometry. This thesis presents the implementation of a constant voltage hot-wire anemometer for use with the Boundary Layer Data System (BLDS). A hot-wire calibration apparatus has been developed that is capable of operation inside a vacuum chamber and flow speeds up to 50 m/s. Hot-wires operated with a constant-voltage anemometer (CVA) were calibrated at absolute static pressures down to 26 kPa. A thermal/electrical model for a hot-wire and the CVA circuit successfully predicted the measured CVA output voltage trend at reduced pressure environments; however, better results were obtained when the Nusselt number was increased. A calibration approach that required only one measured flow speed was developed to allow autonomous calibrations of a CVA hot-wire. The single-point calibration approach was evaluated through comparison with the experimental data from the vacuum chamber over a range of 14-50 m/s and at pressures from 26 to 100 kPa. The thermal-electrical model was used to make predictions of CVA output voltage and the corresponding flow speed for conditions that could not be replicated within a laboratory. The first set of predictions were made for conditions from 7.5 to 100 kPa, at a constant temperature of 25⁰C, within a flight speed range of 40 to 150 m/s. Single-point calibrations were developed from these predictions. Additionally, the thermal-electrical model was used to predict hot-wire response for a change in temperature of 25⁰C at 26 kPa and the single-point calibration developed for the pressure range 7.5 to 100 kPa was tested for its ability to adjust. The temperature variation at a single pressure of 26 kPa proved that the single-point function was capable of adapting to off-standard temperatures with the largest deviations of +/- 7% in the mid-range velocities. With a temperature drop, the deviations were below 5%. The second set of thermal-electrical predictions involved conditions for altitude from 0 to 18 km at flow speeds from 40 to 150 m/s. A single-point calibration was developed for altitude conditions. Furthermore, to test the single-point calibration the thermal-electrical model was used to predict hot-re response for a temperature variation of 25⁰C at 18 km. The single-point calibration developed for altitude proved that it was capable of adjusting to a temperature variation of 25⁰C with maximum deviations of about 5% at mid-range velocities. It is proposed that the single-point calibration approach could be employed for CVA measurements with the Boundary Layer Data System (BLDS) to allow hot-wire data to be acquired autonomously during flight tests.

Page generated in 0.066 seconds