• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Distributed Genetic Algorithm With Migration for the Design of Composite Laminate Structures

McMahon, Mathew T. 10 August 1998 (has links)
This thesis describes the development of a general Fortran 90 framework for the solution of composite laminate design problems using a genetic algorithm (GA). The initial Fortran 90 module and package of operators result in a standard genetic algorithm (sGA). The sGA is extended to operate on a parallel processor, and a migration algorithm is introduced. These extensions result in the distributed genetic algorithm with migration (dGA). The performance of the dGA in terms of cost and reliability is studied and compared to an sGA baseline, using two types of composite laminate design problems. The nondeterminism of GAs and the migration and dynamic load balancing algorithm used in this work result in a changed (diminished) workload, so conventional measures of parallelizability are not meaningful. Thus, a set of experiments is devised to characterize the run time performance of the dGA. The migration algorithm is found to diminish the normalized cost and improve the reliability of a GA optimization run. An effective linear speedup for constant work is achieved, and the dynamic load balancing algorithm with distributed control and token ring termination detection yield improved run time performance. / Master of Science
2

Early assessment of composite structures : Framework to analyse the potential of fibre reinforced composites in a structure subjected to multiple load case

Ananthasubramanian, Srikanth, Gupta, Priyank January 2018 (has links)
To meet the need of lightweight chassis in the near future, a technological step of introducing anisotropic materials like Carbon Fibre Reinforced Plastics (CFRP) in structural parts of cars is a possible way ahead. Though there are commercially available tools to find suitability of Fibre Reinforced Plastics (FRPs) and their orientations, they depend on numerical optimization and complexity increases with the size of the model. Nevertheless, the user has a very limited control of intermediate steps. To understand the type of material system that can be used in different regions for a lightweight chassis, especially during the initial concept phase, a more simplified, yet reliable tool is desirable.The thesis aims to provide a framework for determining fibre orientations according to the most-ideal loading path to achieve maximum advantage from FRP-materials. This has been achieved by developing algorithms to find best-fit material orientations analytically, which uses principal stresses and their orientations in a finite element originating from multiple load cases. This thesis takes inspiration from the Durst criteria (2008) which upon implementation provides information on how individual elements must be modelled in a component subjected to multiple load cases. This analysis pre-evaluates the potential of FRP-suitable parts. Few modifications have been made to the existing formulations by the authors which have been explained in relevant sections.The study has been extended to develop additional MATLAB subroutines which finds the type of laminate design (uni-directional, bi-axial or quasi-isotropic) that is suitable for individual elements.Several test cases have been run to check the validity of the developed algorithm. Finally, the algorithm has been implemented on a Body-In-White subjected to two load cases. The thesis gives an idea of how to divide the structure into sub-components along with the local fibre directions based on the fibre orientations and an appropriate laminate design based on classical laminate theory.
3

Design of aerospace laminates for multi-axis loading and damage tolerance

Nielsen, Mark January 2018 (has links)
Acknowledging the goal of reduced aircraft weight, there is a need to improve on conservative design techniques used in industry. Minimisation of laminate in-plane elastic energy is used as an appropriate in-plane performance marker to assess the weight saving potential of new design techniques. MATLAB optimisations using a genetic algorithm were used to find the optimal laminate variables for minimum in-plane elastic energy and/or damage tolerance for all possible loadings. The use of non-standard angles was able to offer equivalent, if not better in-plane performance than standard angles, and are shown to be useful to improve the ease of manufacture. Any standard angle laminate stiffness was shown to be able to be matched by a range of two non-standard angle ply designs. This non-uniqueness of designs was explored. Balancing of plus and minus plies about the principal loading axes instead of themanufacturing axes was shown to offer considerable potential for weight saving as the stiffness is better aligned to the load. Designing directly for an uncertain design load showed little benefit over the 10% ply percentage rule in maintaining in-plane performance. This showed the current rule may do a sufficient job to allow robustness in laminate performance. This technique is seen useful for non-standard angle design that lacks an equivalent 10% rule. Current use of conservative damage tolerance strain limits for design has revealed the need for more accurate prediction of damage propagation. Damage tolerance modelling was carried out using fracture mechanics for a multi-axial loading considering the full 2D strain energy and improving on current uni-axial models. The non-conservativeness of the model was evidenced to be from assumptions of zero post-buckled stiffness. Preliminary work on conservative multi-axial damage tolerance design, independent of thickness, is yet to be confirmed by experiments.

Page generated in 0.0474 seconds