• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 11
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 121
  • 121
  • 121
  • 58
  • 43
  • 41
  • 23
  • 18
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Land-use changes caused by livelihood transitions and their impact on tropical lower montane forest in Shan State, Myanmar / ミャンマーシャン州の生業転換にともなう土地利用変化と下部山地林に対するその影響

Phyu, Phyu Lwin 23 January 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20816号 / 農博第2256号 / 新制||農||1055(附属図書館) / 学位論文||H30||N5098(農学部図書室) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 神﨑 護, 教授 北島 薫, 教授 德地 直子 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
42

A GIS Study on Land-Cover Changes in the Finnish Reindeer Summer Pastures Over the Last 65 years : The possible effects of land use change and climate change on reindeer summer pastures in northern Finland

Pulkkinen, Emma January 2022 (has links)
No description available.
43

The Post-frontier: Land use and social change in the Brazilian Amazon (1992 - 2002)

Summers, Percy M. 21 July 2008 (has links)
Deforestation of tropical forests is one of the most pressing environmental problems of the twenty-first century, leading to the loss of environmental services such as climate regulation and biodiversity. The expansion of the agricultural frontier by small landholder farmers continues to be one of the major drivers of land use change in the Amazon region. Much of the recent research in the Brazilian Amazon has been focused on modeling their behavior in order to prescribe policies that can curb current deforestation rates and promote more sustainable land use practices. The availability of more sophisticated remote sensing and economic modeling tools has led to the proliferation of agricultural household level models that attempt to explain land use change processes at the farm level. This dissertation tests the household life cycle theory in one of the oldest colonization fronts in the Brazilian Amazon: Rondônia, now a post-frontier. The study examines household and farm level changes over time for specific aspects of the frontier process that can be tested using the household life cycle theory. This study introduces important additions to the life cycle theory in order to consider the more dynamic and complex set of factors that characterize modern frontier processes. Specifically the study examines: (1) property fragmentation and expansion processes, (2) property ownership, turnover and change, and (3) land use change processes at the property level. These are linked to changes in the social and economic features of the smallholder farmer as it moves along its life cycle. The central hypothesis is that these changes in property and land use dynamics can be explained by the corresponding changes in the life cycle of the household as the frontier evolves over time into a post-frontier. It was found that the household life cycle theory did not adequately explain land use change processes over time. As the frontier evolved into the modern post-frontier, the labor and drudgery constraints associated with the initial frontier processes, as exemplified in the household life cycle theory, became less relevant. The Sauerian concept of cultural successions and the concept of scale from hierarchical ecology are used in order to explain the apparent inconsistencies found between the household life cycle theory and land use change processes over time and at different scales of analysis. The household life cycle theory is a useful theoretical framework from which to examine the effects of household level factors on land use; however, this must be embedded within concepts of time and scale that determine their differentiated impact and behavior. Existing plans to expand road infrastructure into the Amazon region will open-up previously inaccessible rainforest regions to agricultural frontier expansion at a scale unprecedented since the mid-eighties. Findings from this study reveal that policies based on household life cycle postulates will have limited impacts in reducing deforestation rates and promoting sustainable land use practices. Appropriate accounting of the social and environmental costs of future infrastructure development projects should consider associated frontier agricultural expansion costs to discourage further deforestation. / Ph. D.
44

An assessment of suspended sediment in Weeks Bay Reserve, Baldwin County, Alabama, using geospatial modeling and field sampling methods

Thomason, Jamie Cindi 09 August 2008 (has links)
This study compares suspended sediment and land use/land cover in the watershed of Weeks Bay, Alabama. Using Landsat thematic mapper imagery, potential high and low erosion sites were determined based on the increase in urban development form 2002 to 2005. In situ sediment sampling was used to test the hypothesis that the high erosion potential sites have larger amounts of suspended sediments. Additionally, sampling was performed along the Fish and Magnolia rivers to establish a background total suspended sediment level. The background study established an average total suspended sediment concentration of 18.71 mg/L for the Fish River and 17.47 mg/L for the Magnolia River, which are higher than previous studies. The results of the comparison between suspended sediments and land use/land cover proved to be more complex than expected due to variation in precipitation, to the 30 m satellite resolution, and to the criteria for classifying urban land use.
45

Simulating the hydrologic impacts of land cover and climate changes under a semi-arid environment

Chen, Heyin January 2013 (has links)
No description available.
46

Modeling the Impact of Land Cover Change on Non-point Source Nitrogen Inputs to Streams at a Watershed Level: Implications for Regional Planning

Mitsova-Boneva, Diana January 2008 (has links)
No description available.
47

Assessing the impact of highway development on land use/land cover change in Appalachian Ohio

Day, Karis L. 05 September 2006 (has links)
No description available.
48

Spatial Patterns on Virginia's Second Highest Peak: Land Cover Dynamics and Tree Mortality in Two Rare Ecosystems

Harris, Ryley Capps 12 June 2020 (has links)
Whitetop Mountain is Virginia's second highest peak and hosts two globally rare, insular ecosystems: a southern Appalachian grass bald and a red spruce-dominated forest. These areas provide important ecosystem services and habitat for rare and endangered species. They are highly prized for their cultural value and recreational areas that support nearby rural economies. This thesis investigated spatial patterns in both ecosystems on Whitetop. We documented a 24.73% decrease of in the extent of the southern Appalachian grass bald across 68 years through analysis of historical aerial photography. In the red spruce-dominated forest, we used a consumer grade unmanned aerial vehicle (UAV) to survey the health of all trees within a 46 ha sample plot. We assessed (dead, dying, healthy) over 9,000 individual trees based on visual patterns in the imagery and produced spatial products that will inform land managers about where resources are most needed. About 7.4% of the red spruce trees in our study area were classified as dead or dying. A model relating spruce mortality to biophysical landscape factors identified no single predictive factor related to mortality. The addition of optical information from the UAV imagery into the model proved utility for remotely-sensed data in identification of dead spruce within the forest canopy at Whitetop and possibly in other similarly structured forests. This research contributed to the limited body of knowledge surrounding the decline of both southern Appalachian grass balds and red spruce forests and provided technical insights for future mortality monitoring. / Master of Science / This thesis investigates land cover changes in two rare ecosystems on Whitetop Mountain, Virginia. The mountain has important biological significance and is a cultural landmark. The high-elevation summit hosts plant and animal species characteristic of northern climates, including a red spruce-dominated forest and a southern Appalachian grass bald. This work documented a 24.73% decrease in the size of the rare southern Appalachian grass bald ecosystem at Whitetop Mountain over 68 years and discussed potential drivers and proposed management for conservation. We also successfully used a camera-equipped unmanned aerial vehicle (drone) to produce high quality imagery for spruce mortality detection within the red spruce forest. Of over 9,000 standing spruce trees, 7.4% were categorized as either dead or dying. We built a predictive model to investigate the relationship between mortality and biophysical environmental factors, but did not identify a single causal factor. A second model that included the color band information from the drone camera revealed that different types of aerial imagery could play a valuable role in detection of tree mortality in forests of similar structure. Overall this research contributes to the body of knowledge surrounding the decline of both southern Appalachian grass bald and red spruce ecosystems and provides insights for management.
49

Terrestrial ecosystem impacts on air quality

Wong, Yik Hong 16 July 2024 (has links)
The terrestrial ecosystem is an integral component of the Earth System. Constant atmosphere-biosphere exchanges of energy and material affect both the physics and chemistry of the atmosphere. While the general roles of terrestrial ecosystems in regulating ozone and particulate matter air pollution have long been acknowledged, our understanding at both individual process and system level are far from perfect. Also, new process-level discoveries about terrestrial atmosphere-biosphere exchanges are not timely incorporated in numerical models routinely used to study and forecast air quality. These hinder our ability to understand how air quality respond to environmental changes and variabilities. Chapter 1 of this dissertation provides a brief overview on these topics. In Chapter 2 of this dissertation (Wong et al., 2019), we conduct global long-term simulations of ozone dry deposition velocity with four different types of dry deposition parameterizations. We find that none of the tested parameterizations universally stands out in terms of matching observed ozone deposition velocity over different land cover types. Combining this with sensitivity simulations from a global 3-D atmospheric chemistry model (GEOS-Chem), we find that the choice of dry deposition parameterizations can affect the mean, trend and variability of simulated surface O3 level. In Chapter 3 of this dissertation (Wong et al., 2022), we analyze long-term ozone flux observation from three field sites to examine the effects of extreme heat and dryness on ozone deposition. We find that non-stomatal ozone uptake tends to increase during hot days, which either partially offsets or dominates over the reduction in stomatal ozone uptake anticipated by ecophysiological theory. While the response of ozone deposition to dryness is more varied, changes in non-stomatal deposition are usually important. Current dry deposition parameterizations often fail to capture such changes in non-stomatal ozone uptake, resulting in considerable potential error in simulated surface ozone level during hot and dry days. In Chapter 4 of this dissertation (Wong and Geddes, 2021), we conduct global GEOS-Chem numerical experiments with anthropogenic emission inventories and land surface remote sensing products to compare the effects land cover versus land management changes on O3 and fine particulate matter air quality over 1992 – 2014. We find that land cover has stronger effects on O3, while land management has stronger effects on fine particulate matter pollution. We also find that land management has significantly altered regional and global nitrogen deposition, and therefore the risk of critical load exceedance. Chapter 5 of this dissertation includes the concluding remarks and suggestions for future work. In addition, I outline and present the preliminary result from a project examining the future of soil reactive nitrogen emissions and their impacts on air quality.
50

Linking Streamflow Trends with Land Cover Change in a Southern US Water Tower

Miele, Alexander 21 December 2023 (has links)
Characterizing streamflow trends is important for water resources management. Streamflow conditions, and trends thereof, are critical drivers of all aspects of stream geomorphology, sediment and nutrient transport, and ecological processes. Using the non-parametric modified Mann-Kendall test, we analyzed streamflow trends from 1996 to 2022 for the Southern Appalachian (SA) region of the U.S. The forested uplands of the SA receive high amounts of rain and act as a "water tower" for the surrounding lowland area, both of which have experienced higher than average population growth and urban development. For the total of 127 USGS gages with continuous streamflow measurements, we also evaluated precipitation and land change rates and patterns within the upstream contributing areas. Statistical methods (i.e., generalized linear models) were then used to assess any linkages between land cover change (LCC) and streamflow trends. Our results show that 42 drainage areas are experiencing increasing trends in their precipitation, and 1 is experiencing a negative trend. A total of 71 drainage areas are experiencing increasing trends in either their annual streamflow minimums, maximums, medians, or variability, with some experiencing changes in multiple. From our models, it is suggested that agricultural expansion is associated with increasing minimum streamflow trends, but increasing precipitation is also positively linked. With this information, water managers would be aware of which areas are experiencing changes in streamflow amounts from LCC or precipitation and could then apply this in planning and predictions. / Master of Science / Water availability is important for resources management. Streamflow is a measure of available surface water and is an important component in the hydrological cycle. Using the non-parametric modified Mann-Kendall test, we analyzed streamflow trends from 1996 to 2022 for the Southern Appalachian (SA) region of the U.S. The forested uplands of the SA receive high amounts of rain and act as a "water tower" for the surrounding lowland area, both of which have experienced higher than average population growth and city expansion. For the total of 127 USGS gages with continuous streamflow measurements, we also evaluated precipitation and land cover change rates within the area upstream of the gage (or drainage/contributing area). Statistical methods (i.e., generalized linear models) were then used to assess any linkages between land cover change (LCC) and streamflow trends. Our results show that 42 drainage areas are experiencing increasing trends in their precipitation, and 1 is experiencing a negative trend. A total of 71 drainage areas are experiencing increasing trends in either their annual streamflow minimums, maximums, medians, or variability, with some experiencing changes in multiple. From our models, it is suggested that agricultural expansion is associated with increasing minimum streamflow trends, but increasing precipitation is also positively linked. With this information, water managers would be aware of which areas are experiencing changes in streamflow amounts from LCC or precipitation and could then apply this in planning and predictions.

Page generated in 0.0492 seconds