• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A multi-scale assessment of spatial-temporal change in the movement ecology and habitat of a threatened Grizzly Bear (Ursus arctos) population in Alberta, Canada

Bourbonnais, Mathieu Louis 31 August 2018 (has links)
Given current rates of anthropogenic environmental change, combined with the increasing lethal and non-lethal mortality threat that human activities pose, there is a vital need to understand wildlife movement and behaviour in human-dominated landscapes to help inform conservation efforts and wildlife management. As long-term monitoring of wildlife populations using Global Positioning System (GPS) telemetry increases, there are new opportunities to quantify change in wildlife movement and behaviour. The objective of this PhD research is to develop novel methodological approaches for quantifying change in spatial-temporal patterns of wildlife movement and habitat by leveraging long time series of GPS telemetry and remotely sensed data. Analyses were focused on the habitat and movement of individuals in the threatened grizzly bear (Ursus arctos) population of Alberta, Canada, which occupies a human-dominated and heterogeneous landscape. Using methods in functional data analysis, a multivariate regionalization approach was developed that effectively summarizes complex spatial-temporal patterns associated with landscape disturbance, as well as recovery, which is often left unaccounted in studies quantifying patterns associated with disturbance. Next, the quasi-experimental framework afforded by a hunting moratorium was used to compare the influence of lethal (i.e., hunting) and non-lethal (i.e., anthropogenic disturbance) human-induced risk on antipredator behaviour of an apex predator, the grizzly bear. In support of the predation risk allocation hypothesis, male bears significantly decrease risky daytime behaviours by 122% during periods of high lethal human-induced risk. Rapid behavioural restoration occurred following the end of the hunt, characterized by diel bimodal movement patterns which may promote coexistence of large predators in human-dominated landscapes. A multi-scale approach using hierarchical Bayesian models, combined with post hoc trend tests and change point detection, was developed to test the influence of landscape disturbance and conditions on grizzly bear home range and movement selection over time. The results, representing the first longitudinal empirical analysis of grizzly bear habitat selection, revealed selection for habitat security at broad scales and for resource availability and habitat permeability at finer spatial scales, which has influenced potential landscape connectivity over time. Finally, combining approaches in movement ecology and conservation physiology, a body condition index was used to characterize how the physiological condition (i.e., internal state) of grizzly bears influences behavioral patterns due to costs and benefits associated with risk avoidance and resource acquisition. The results demonstrated individuals in poorer condition were more likely to engage in risky behaviour associated with anthropogenic disturbance, which highlights complex challenges for carnivore conservation and management of human-carnivore conflict. In summary, this dissertation contributes 1) a multivariate regionalization approach for quantifying spatial-temporal patterns of landscape disturbance and recovery applicable across diverse natural systems, 2) support for the growing theory that apex predators modify behavioural patterns to account for temporal overlap with lethal and non-lethal human-induced risk associated with humans, 3) an integrated approach for considering multi-scale spatial-temporal change in patterns of wildlife habitat selection and landscape connectivity associated with landscape change, 4) a cross-disciplinary framework for considering the impacts of the internal state on behavioural patterns and risk tolerance. / Graduate
2

Road networks, timber harvest, and the spread of Phytophthora root rot infestations of Port-Orford-­cedar in southwest Oregon

Clark, William C. 01 September 2011 (has links)
Phytophthora lateralis is the causal agent of cedar root rot, a fatal forest pathogen whose principal host is Chamaecyparis lawsoniana (Port-Orford-cedar), a predominantly riparian-restricted endemic tree species of ecological, economical, and cultural importance to coastal Oregon and California. Local scale distribution of P. lateralis is thought to be associated with timber harvest and road-building disturbances. However, knowledge of the landscape-scale factors that contribute to successful invasions of P. lateralis is also important for effective land management of Port-Orford-cedar. P. lateralis is able to infest in wet conditions via stream networks (zoospore) and dry conditions via road networks (resting spore). This study tested the hypothesis that vehicles spread P. lateralis by relating its distribution to traffic intensive, anthropogenic disturbances (i.e. a road network, timber harvest) over a 31-yr period in a 3,910-km² portion of the Rogue River-Siskiyou National Forest in the Siskiyou Mountains of Oregon. Indices of road disturbance (presence/absence, configuration, length, density, road-stream network connectivity) and timber harvest (presence/absence, area, density, frequency) were related to locations of infested cedar populations from a USFS survey dataset using a geographic information system (GIS). About 40% of 934 7th-field catchments were infested with the pathogen. Total road length of the study site was 5,070 km; maximum road density was 8.2 km/km2 and averaged 1.6 km/km² in roaded catchments (n = 766). Timber activities extracted 17,370 ha (2,338 cutting units) of forest across 509 catchments; 345 catchments were cut ≥ twice. Maximum harvest density was 0.92 km²/km² ([mean] = 0.04). Both road networks and timber harvest patchworks were significantly related to cedar root rot heterogeneity. Chi-squared contingency tables showed that infestation rates were 2.2 times higher in catchments with roads compared to roadless catchments and 1.4 times higher in catchments with road-stream intersections compared to those that were unconnected. Infestation was twice as likely in catchments with both harvest and road presence than road presence alone. Single-variable logistic regression showed that a one percent increase in harvest density increased infestation odds 25% and a one-unit (km/km²) increase in road density increased infestation odds 80%. Road and stream network configuration was also important to pathogen distribution: 1) uninfested catchments are most likely to be spatially removed from infested, roaded catchments, 2) only 11% of 287 roaded catchments downstream of infested, roaded catchments were uninfested, and 3) only 12% of 319 catchments downstream of infested catchments were uninfested. Road networks and timber harvest patchworks appear to reduce landscape heterogeneity by providing up-catchment and down-catchment access to host populations by linking pathogenic materials to the stream network. Timber harvest data suggest that while infestation risk to Port-Orford-cedar populations remains high, management policies may have curbed infestation risk in timber-harvested catchments; if this is a result of specific P. lateralis mitigation policies adopted in the late 1980's or broader, region-wide conservation policies (i.e. the Northwest Forest Plan) is yet unclear. / Graduation date: 2012

Page generated in 0.1021 seconds