• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 46
  • 31
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 192
  • 192
  • 87
  • 55
  • 33
  • 26
  • 25
  • 21
  • 17
  • 17
  • 17
  • 16
  • 16
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Phospholipid membranes in biosensor applications : Stability, activity and kinetics of reconstituted proteins and glycolipids in supported membranes

Gustafson, Inga January 2004 (has links)
<p>In this study the formation of supported membranes onto planar solid supports has been investigated. The stability and activity of reconstituted membrane receptors has been studied. The potential use of such preparations in biosensor applications is discussed.</p><p>The lipid films were made by the Langmuir Blodgett and by the liposome fusion techniques. These supported films were characterised by ellipsometry, atomic force microscopy, surface plasmon resonance (SPR) and resonant mirror techniques. The thickness of the films was in agreement with that of a cell membrane. The kinetics of formation of the lipid films was studied and discussed.</p><p>The proteins, bacteriorhodopsin, cytochrome oxidase, acetylcholinesterase and the nicotinic acetylcholine receptor were reconstituted into the supported membrane. The subsequent analysis showed that the proteins were individually distributed and that the activity was retained, in some cases for several weeks after immobilisation.</p><p>The glycolipids, GM1, GM2, GD1b, asialo-GM1, globotriaosylceramide, lactosylceramide and galactosylceramide, were also reconstituted into the supported membranes. Their specific interaction with the toxin ricin or with its B-chain was examined using SPR. The affinity of intact toxin and of its B-chain differed markedly and was pH dependent. The carbohydrate chain length and charge density of the glycolipids also influenced the affinity.</p>
162

Films nématiques minces sur substrats liquides

Delabre, Ulysse 10 November 2009 (has links) (PDF)
Ce travail de thèse analyse l'organisation des films de cristaux liquides nématiques sur substrats liquides (eau et glycérol). Dans ce cas, l'ancrage planaire au niveau du substrat liquide est plus fort que l'ancrage homéotrope à l'interface libre. En dessous d'une épaisseur critique de l'ordre de 0.5-0.6 µm, des stries qui correspondent à une modulation de l'orientation du directeur, apparaissent. La longueur d'onde de ces stries est largement supérieure à l'épaisseur du film. Nous avons analysé la situation spécifique des films très minces et montré qu'une phase striée existait pour des films plats jusqu'à des épaisseurs de l'ordre de 20-40 nm. La pertinence de l'introduction des termes élastiques dits de surface (K24 et K13) dans l'analyse théorique des stries a été discutée. Sur l'eau, les films nématiques coexistent avec une tricouche de molécules dont l'organisation est régie par des interactions à très courte portée avec le substrat. Les gradients d'épaisseur présents en bord de film empêchent la formation de stries. Des mesures statiques et dynamiques de l'énergie d'un bord de film ont été effectuées. Il semble alors que le film nématique puisse accommoder un état distordu grâce à la formation de stries bien en dessous de l'épaisseur critique de transition de confinement. Enfin, une étude du processus de coalescence contrôlée par la tension de ligne a permis de mettre en évidence deux régimes de dissipation : aux temps courts la dissipation s'effectue en surface alors qu'aux temps longs, la dissipation se fait principalement dans la sous-phase. Une analyse en loi d'échelle permet de rendre compte de la dynamique observée expérimentalement.
163

Hydrophobic surfaces: Effect of surface structure on wetting and interaction forces

Hansson, Petra M January 2012 (has links)
The use of hydrophobic surfaces is important for many processes both in nature and industry. Interactions between hydrophobic species play a key role in industrial applications such as water-cleaning procedures and pitch control during papermaking but they also give information on how to design surfaces like hydrophobic mineral pigments. In this thesis, the influence of surface properties on wetting and interaction forces has been studied. Surfaces with close-packed particles, pore arrays, randomly deposited nanoparticles as well as reference surfaces were prepared. The atomic force microscope (AFM) was utilized for force and friction measurements while contact angles and confocal Raman microscopy experiments were mainly used for wetting studies. The deposition of silica particles in the size range of nano- to micrometers using the Langmuir-Blodgett (LB) technique resulted in particle coated surfaces exhibiting hexagonal close-packing and close to Wenzel state wetting after hydrophobization. Force measurements displayed long-range interaction forces assigned to be a consequence of air cavitation. Smaller roughness features provided larger forces and interaction distances interpreted as being due to fewer restrictions of capillary growth. Friction measurements proved both the surface structure and chemistry to be important for the observed forces. On hydrophobic pore array surfaces, the three-phase contact line of water droplets avoided the pores which created a jagged interface. The influence of the pores was evident in the force curves, both in terms of the shape, in which the three-phase contact line movements around the pores could be detected, as well as the depth of the pores providing different access and amount of air. When water/ethanol mixtures were used, the interactions were concluded to be due to ethanol condensation. Confocal Raman microscopy experiments with water and water/ethanol mixtures on superhydrophobic surfaces gave evidence for water depletion and ethanol/air accumulation close to the surface. Force measurements using superhydrophobic surfaces showed extremely long-range interaction distances. This work has provided evidence for air cavitation between hydrophobic surfaces in aqueous solution. It was also shown that the range and magnitude of interaction forces could, to some extent, be predicted by looking at certain surface features like structure,roughness and the overall length scales. / <p>QC 20121011</p>
164

Phospholipid membranes in biosensor applications : Stability, activity and kinetics of reconstituted proteins and glycolipids in supported membranes

Gustafson, Inga January 2004 (has links)
In this study the formation of supported membranes onto planar solid supports has been investigated. The stability and activity of reconstituted membrane receptors has been studied. The potential use of such preparations in biosensor applications is discussed. The lipid films were made by the Langmuir Blodgett and by the liposome fusion techniques. These supported films were characterised by ellipsometry, atomic force microscopy, surface plasmon resonance (SPR) and resonant mirror techniques. The thickness of the films was in agreement with that of a cell membrane. The kinetics of formation of the lipid films was studied and discussed. The proteins, bacteriorhodopsin, cytochrome oxidase, acetylcholinesterase and the nicotinic acetylcholine receptor were reconstituted into the supported membrane. The subsequent analysis showed that the proteins were individually distributed and that the activity was retained, in some cases for several weeks after immobilisation. The glycolipids, GM1, GM2, GD1b, asialo-GM1, globotriaosylceramide, lactosylceramide and galactosylceramide, were also reconstituted into the supported membranes. Their specific interaction with the toxin ricin or with its B-chain was examined using SPR. The affinity of intact toxin and of its B-chain differed markedly and was pH dependent. The carbohydrate chain length and charge density of the glycolipids also influenced the affinity.
165

Characterization, Mechanism and Kinetics of Phase-separation of Mixed Langmuir-Blodgett Films

Qaqish, Shatha Eid 16 April 2009
The phase separation of mixed Langmuir-Blodgett (LB) monolayers was investigated using a combination of atomic force microscopy (AFM), X-ray photoelectron emission microscopy (X-PEEM) and confocal fluorescent microscopy measurements. Shapes of phase-separated domains that formed on solid substrate surfaces depended on a competition between line tension and dipole-dipole interactions. In the mixed LB film of arachidic acid (C19H39COOH) (C20) and perfluorotetradecanoic acid (C13F27COOH) (F14), the components phase separated into elevated hexagonal domains of C20 surrounded by a continuous domain primarily consisting of F14. The underlying molecular arrangement of C20 was found to be an oblique packing. The domains in this system grew via Ostwald ripening and the kinetics of their growth was modeled by twodimensional LifshitzSlyozov equation. In the stearic acid (C17H35COOH) (C18) and F14 mixed films, the C18 domains formed a linear pattern where the F14 molecules filled the areas in between the lines occupied by C18. For the mixed film of palmitic acid (C15H31COOH) (C16) and perfluorooctadecanoic acid (C17F35COOH) (F18), the surfactants phaseseparated into elevated hexagonal domains with hairy extensions radiating from them. These domains were composed of F18 and surrounded by C16. Ostwald ripening was found to be the mechanism of domain growth. Phase separation was controlled by different forces such as line tension and dipole interactions, as well as the diffusion of the molecules, solubility of the surfactant in the sub-phase, temperature and surface pressure. Simple mechanisms regarding phase separation and pattern formation were discussed in these mixed systems. It was observed that all fatty acid / F14 systems in this study were immiscible at all molar fractions examined. The fatty acid / F18 systems were immiscible at short chains of fatty acids (myristic acid (C13H27COOH) C14, C16, C18), whereas at longer fatty acid chains (C20, C22 behenic acid (C21H43COOH)) the components of the mixed system became miscible. When perfluorocarboxylic acid chain combined with fatty acids, the domains changed from large hexagonal domains into narrow lines as the fatty acid chain decreased in length.
166

Characterization, Mechanism and Kinetics of Phase-separation of Mixed Langmuir-Blodgett Films

Qaqish, Shatha Eid 16 April 2009 (has links)
The phase separation of mixed Langmuir-Blodgett (LB) monolayers was investigated using a combination of atomic force microscopy (AFM), X-ray photoelectron emission microscopy (X-PEEM) and confocal fluorescent microscopy measurements. Shapes of phase-separated domains that formed on solid substrate surfaces depended on a competition between line tension and dipole-dipole interactions. In the mixed LB film of arachidic acid (C19H39COOH) (C20) and perfluorotetradecanoic acid (C13F27COOH) (F14), the components phase separated into elevated hexagonal domains of C20 surrounded by a continuous domain primarily consisting of F14. The underlying molecular arrangement of C20 was found to be an oblique packing. The domains in this system grew via Ostwald ripening and the kinetics of their growth was modeled by twodimensional LifshitzSlyozov equation. In the stearic acid (C17H35COOH) (C18) and F14 mixed films, the C18 domains formed a linear pattern where the F14 molecules filled the areas in between the lines occupied by C18. For the mixed film of palmitic acid (C15H31COOH) (C16) and perfluorooctadecanoic acid (C17F35COOH) (F18), the surfactants phaseseparated into elevated hexagonal domains with hairy extensions radiating from them. These domains were composed of F18 and surrounded by C16. Ostwald ripening was found to be the mechanism of domain growth. Phase separation was controlled by different forces such as line tension and dipole interactions, as well as the diffusion of the molecules, solubility of the surfactant in the sub-phase, temperature and surface pressure. Simple mechanisms regarding phase separation and pattern formation were discussed in these mixed systems. It was observed that all fatty acid / F14 systems in this study were immiscible at all molar fractions examined. The fatty acid / F18 systems were immiscible at short chains of fatty acids (myristic acid (C13H27COOH) C14, C16, C18), whereas at longer fatty acid chains (C20, C22 behenic acid (C21H43COOH)) the components of the mixed system became miscible. When perfluorocarboxylic acid chain combined with fatty acids, the domains changed from large hexagonal domains into narrow lines as the fatty acid chain decreased in length.
167

Effets d'exaltations par des nanostructures métalliques application à la microscopie Raman en Champ Proche /

Marquestaut, Nicolas Lagugné-Labarthet, François. Servant, Laurent. January 2009 (has links) (PDF)
Thèse de doctorat : Sciences chimiques. Chimie-physique : Bordeaux 1 : 2009. / Titre provenant de l'écran-titre.
168

Interfacial assembly of star-shaped polymers for organized ultrathin films

Choi, Ikjun 13 January 2014 (has links)
Surface-assisted directed assembly allows ultrasoft and replusive functional polymeric “colloids” to assemble into the organized supramolecular ultrathin films on a monomolecular level. This study aims at achieving a fundamental understanding of molecular morphology and responsive behavior of major classes of branched star-shaped polymers (star amphiphilic block copolymers and star polyelectrolytes) and their aggregation into precisely engineered functional ultrathin nanofilms. Thus, we focus on elucidating the role of molecular architecture, chemical composition, and intra/intermolecular interactions on the assembly behavior of highly-branched entities under variable environmental and confined interfacial conditions. The inherent molecular complexity of branched architectures facilitates rich molecular conformations and phase states from the combination of responsive dynamics of flexible polymer chains (amphiphilic, ionizable arms, multiple segments, and free chain ends) and extened molecular design parameters (number of arms, arm length, and segment composition/sequence). These marcromolecular building components can be affected by external conditions (pH, salinity, solvent polarity, concentration, surface pressure, and substrate nature) and transformed into a variety of complex nanostructures, such as two-dimensional circular micelles, core/shell unimicelles, nanogel particles, pancake & brush micelles, Janus-like nanoparticles, and highly nanoporous fractal networks. The fine balance between repulsive mulitarm interactions and surface energetic effects in the various confined surfaces and interfaces enables the ability to fabricate and tailor well-organized ultrathin nanofilms. The most critical findings in this study include: (1) densely packed circular unimicelle monolayers from amphiphilic and amphoteric multiblock stars controlled by arm number, end blocks, and pH/pressure induced aggregation, (2) monolayer polymer-metal nanocomposites by in-situ nanoparticle growth at confined interfaces, (3) on-demand control of exponentially or linearly grown heterogeneous stratified multilayers from self-diffusive pH-sensitive star polyelectrolyte nanogels, (4) core/shell umimicelle based microcapsules with a fractal nanoporous multidomain shell morphology, and (5) preferential binding and ordering of Janus-like unimicelles on chemically heterogeneous graphene oxide surfaces for biphasic hybrid assembly. The advanced branched molecular design coupled with stimuli responsive conformational and compositional behavior presents an opportunity to control the lateral diffusion and phase segregation of branched compact supermolecules on the surface resulting in the generation of well-controllable monolayers with tunable ordering and complex morphology, as well as to tailor their stratified layered nanostructures with switchable morphological heterogeneity and multicompartmental architectures. These surface-driven star polymer supramolecular assemblies and interfaces will enable the design of multifunctional nanofilms as hierarchical responsive polymer materials.
169

Organic/inorganic nanostructured materials: towards synergistic mechanical and optical properties

Gunawidjaja, Ray 29 June 2009 (has links)
Two designs of inorganic/organic hybrid micro-structures are discussed: (1) silver nanowire reinforced layer-by-layer (LbL) polyelectrolyte composite film and (2) bimetallic silver-gold core-shell nanoparticles. In this work, zero-dimensional spherical gold nanoparticles (AuNPs), one-dimensional silver nanowires (AgNWs), and two-dimensional silver nanoplates (AgNPls) represent the inorganic component. Three-arm star polymer and polyelectrolytes represent the organic component. In the first design, the one-dimensional AgNWs serves as a mechanical reinforcement for the fabrication of mechanically isotropic and anisotropic polyelectrolyte composite films. The composite film is mechanically isotropic when the AgNWs are randomly oriented, and it is anisotropic when the AgNWs are unidirectionally oriented within the LbL polyelectrolyte matrix. Furthermore, above the AgNWs percolation threshold, the AgNWs reinforced LbL composite film is electrically conductive. Therefore, it can find application in ultrathin LbL film-based sensor. In the second design, the zero-dmensional AuNPs were assembled onto one-dimensional AgNWs and two-dimensional AgNPls by means of star polymer linker, or alternatively using polyelectrolytes via electrostatics interaction. The unique feature of these bimetallic silver-gold core-shell nanoparticles is their ability to greatly enhance electric field, due to the silver-gold intra-particle interaction. This allows it to serve as a single-nanoparticle surface enhanced Raman scattering (SERS) substrate for chemical sensing.
170

Avaliação da atividade osteogênica de superfícies de titânio revestidas com camadas de lipídios e fosfato de cálcio / Evaluation of the osteogenic activity of titanium surfaces coated with lipids layers and calcium phosphate

Amanda Natalina de Faria 24 March 2017 (has links)
As coberturas de hidroxiapatita (HAp) são utilizadas para aumentar a osteointegração em implantes de titânio (Ti), devido à sua capacidade de promover a biomineralização para corrigir defeitos esqueléticos e craniofaciais. O objetivo desta pesquisa foi avaliar a influência dos revestimentos sobre culturas primárias de osteoblastos. Na primeira fase de estudos, desenvolvemos uma nova abordagem de revestimento baseada em filmes Langmuir-Blodgett (LB) de dihexadecilfosfato (DHP) e ácido octadecilfosfônico (OPA) depositados em discos Ti, e crescimento subsequente de cristais de HAp. Analisamos a viabilidade dos osteoblastos, a atividade da fosfatase alcalina (ALP) e a formação da matriz mineralizada por métodos colorimétricos e a morfologia das culturas por microscopia eletrônica de varredura e microscopia confocal. Os resultados revelaram que o revestimento DHP/HAp aumentou a viabilidade dos osteoblastos até 150% em comparação com o controle em todos os dias testados. O revestimento OPA/HAp promoveu a maior viabilidade ao 14 dias (190%). A atividade de ALP foi aumentada apenas pelo revestimento de DHP/HAp ao 14º dia em comparação com o controle e Ti limpo. A microscopia eletrônica de varredura e as microfotografias confocais revelaram diferenças morfológicas entre os osteoblastos cultivados em ambos os revestimentos, aumentando o seu número e o espalhamento. O revestimento de DHP/HAp aumentou a produção de nódulos biomineralizados. O ensaio de biomineralização pela técnica do Vermelho de Alizarina mostrou que o revestimento de OPA/HAp possuía uma concentração de cálcio (Ca2+) 1,88 vezes superior à cobertura de DHP/HAp. Uma vez que a literatura relata que o Ca2+ pode estimular ou inibir a atividade da ALP e, consequentemente, o processo de biomineralização, as diferenças no comportamento desses dois revestimentos podem estar relacionadas às diferenças de concentração de superfície de Ca2+. O bom desempenho do revestimento de DHP/HAp pode estar relacionado às características da composição química, adicionada à técnica de deposição LB. Na segunda fase da pesquisa, as monocamadas de Langmuir de DHP e dipalmitoil fosfatidilcolina (DPPC) foram testadas e utilizadas para incorporar o paratormônio 1-34 (PTH 1-34) (DHP/Ca+PTH e DPPC/Ca+PTH, respectivamente). Também foram testadas as ações dos revestimentos DHP/HAp com PTH em solução (DHP/HAp+PTH S) e gotejado (DHP/HAp+PTH G) em culturas de osteoblastos. Um potencial zeta negativo em pH 7,4 foi encontrado (-14,9 mV) para o PTH 1-34. A isoterma de DPPC mostrou um aumento da área mínima ocupada por molécula lipídica após a injeção de PTH na subfase de água (50 ?L de solução 0,5 mg/mL) em 10,97 Å2, o que pode ser devido à inserção de PTH neste filme. A área mínima de DHP foi alterada em 2,3 Å2, o que não é estatisticamente significativo. A análise de QCM mostrou um depósito de 72,5 ng de PTH em filme de DPPC e 29,3 ng de PTH em filme de DHP para cada 25 ?g de PTH injetado na cuba de Langmuir. A viabilidade celular e a formação da matriz mineralizada de culturas de osteoblastos crescidas em DHP/Ca+PTH e revestimentos DPPC/Ca+PTH diminuíram quando comparadas com Ti limpo. Os revestimentos DHP/HAp+PTH S e DHP/HAp+PTH G mostraram ser tão eficientes quanto o Ti DHP/HAp para estimular o processo de biomineralização. Mas a cobertura de DHP/HAp+PTH G aumentou a viabilidade dos osteoblastos e a formação de matriz mineralizada quando comparada com Ti DHP/HAp. Esta é uma cobertura inovadora que abre precedentes para o uso da técnica de gotejamento em HAp para outros hormônios e drogas que agem sobre o tecido ósseo. / Due to their ability to promote biomineralization, Hydroxyapatite (HAp) coatings are used to increase the osteointegration in titanium (Ti) implants, in order to correct skeletal and craniofacial defects. The objective of the research was to evaluate the influence of the coatings on osteoblasts primary cultures. In the first phase of the research we developed a new coating approach based on Langmuir-Blodgett (LB) films of dihexadecyl phosphate (DHP) and octadecylphosphonic acid (OPA) deposited on Ti discs and subsequent growth of HAp crystals. We analyzed the osteoblast viability, alkaline phosphatase (ALP) activity and mineralized matrix formation by colorimetric methods, and the morphology of the cultures by scanning electron microscopy and confocal micrographies. The results revealed that the DHP/HAp coating increased osteoblast viability up to 150% compared to the control at all days tested. The OPA/HAp coating promoted the highest viability on the 14th day (190%). The ALP activity was enhanced only by the DHP/HAp coating on the 14th day compared to control, and clean Ti. To explore the morphology of the cells, the scanning electron microscopy and confocal micrographies were obtained, and revealed morphological differences between osteoblasts grown on both coated Ti compared to clean Ti. Both coatings increased the number and spreading of osteoblasts, while the DHP/HAp coating enhanced the production of biomineralized nodules. The Alizarin Red assay showed that OPA/HAp coating has 1.88 times higher calcium (Ca2+) concentration than DHP/HAp. The same test confirmed the increase of mineralization only by DHP/HAp coating compared to clean Ti. Since literature reports that Ca2+ can stimulate or inhibit the ALP activity and consequently, the biomineralization process, the differences on the behavior of these two coatings could be related to the Ca2+ surface concentration differences. The good performance of the DHP/HAp coating can be explained due to the characteristics of the chemical composition, added to the LB deposition technique. In the second phase of the research, Langmuir monolayers of DHP and dipalmitoyl phosphatidylcholine (DPPC) was tested and used to incorporate 1-34 parathyroid hormone (PTH 1-34) (DHP/Ca+PTH, and DPPC/Ca+PTH, respectively). DHP/HAp coatings with PTH in solution (DHP/HAp+PTH S), and dropped (DHP/HAp+PTH G) also were tested on osteoblasts cultures. A negative zeta-potential at pH 7.4 was found (-14.9 mV) to PTH 1-34. The Langmuir isotherm of DPPC showed an increase of the minimum area occupied per lipid molecule after the PTH injection into the water subphase (50 ?L of 0.5 mg/mL solution) by 10.97 Å2, which could be due to the insertion of PTH in this film. The DHP minimum area changed by 2.3 Å2, which is not statistically significant. The QCM analysis showed the deposit of 72.5 ng of PTH on DPPC film, and 29.3 ng of PTH on DHP film for each 25 ?g of PTH injected into the Langmuir trough. The cell viability and matrix mineralization of osteoblasts cultures grown on DHP/Ca+PTH, and DPPC/Ca+PTH coatings decreased when compared to clean Ti. DHP/HAp+PTH S and DHP/HAp+PTH G coatings proved to be as efficient as Ti DHP/HAp to stimulate the biomineralization process. But DHP/HAp+PTH G increased the osteoblast viabilitiy and formation of mineralized matrix when compared to Ti DHP/HAp. This is an innovative coating that sets the precedent for the use of the drip technique on HAp for other hormones and drugs that act on bone tissue.

Page generated in 0.0705 seconds