• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 16
  • 12
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 36
  • 30
  • 25
  • 25
  • 25
  • 23
  • 21
  • 17
  • 17
  • 16
  • 14
  • 14
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Finite Element and Experimental Investigation on the Fatigue of Riveted Lap Joints in Aircraft Applications

Atre, Amarendra 05 April 2006 (has links)
Aircraft fuselage skin panels are joined together by rivets. The initiation and propagation of fatigue cracks in aircraft structures at and around the rivet/skin interface is directly related to residual stress field induced during the riveting process and subsequent service loads. Variations in the manufacturing process, such as applied loading and presence of sealant can influence the induced residual stress field. In previous research, the riveting process has been simulated by a 2D axisymmetric force-controlled analysis. The 2D analysis cannot capture the unsymmetrical residual stress state resulting from process variations. Experimental work has also been limited to observing effects of squeeze force on fatigue crack initiation in the riveted lap joint. In this work, a 3D finite element model of the riveting process that incorporates plasticity and contact between the various surfaces is simulated using ABAQUS finite element code to capture the residual stress state at the rivet/skin interface. The finite element model is implemented to observe the effects of interference, sealant and hole quality on the residual stress state using Implicit and Explicit solvers. Effects of subsequent load transfer are also analyzed with the developed model. A set of controlled lap joint fatigue experiments for the different conditions provides validation to the model.
2

Laser welding of zinc coated steel

Akhter, Rehan January 1990 (has links)
No description available.
3

Ensaios termo-mecanicos e quimicos em cristais de l-arginina fosfatada monohidratada (LAP) / Thermo-mechanical and chemical tests in L-arginine phosphate monohydrate (LAP) crystals

Nakagaito, Antonio Norio 12 March 1999 (has links)
L-arginina fosfatada monohidratada (LAP) é um cristal semiorgânico altamente transparente com propriedades atrativas para conversão de freqüência. É facilmente crescido a partir de solução aquosa e apresenta casamento de fase para todos os processos não-lineares onde o KDP é casável em fase. Apresenta alto limiar de dano, excelente qualidade óptica, é menos higroscópico que o KDP e dispositivos não-lineares podem ser facilmente fabricados a partir deles. Neste trabalho apresentamos os resultados de diversos ensaios para avaliar a sua estabilidade térmica, mecânica e química. Concluiu-se que o cristal de LAP é estável para temperaturas inferiores à 100&#176C. Quando o material for submetido à processos que envolvem geração de grande quantidade de calor, tais como processamento do material por corte ou tomeamento (diamond tuming), ou em sistemas com lasers de alta intensidade, recomenda-se não exceder o limite de 100&#176C para assegurar que as propriedades do material não sejam alteradas / L-arginine phosphate monohydrate (LAP) is a highly transparent semiorganic crystal with atractive properties for frequency conversion. It is easily grown from aqueous solution, and it is phase matchable for alI nonlinear processes where KDP is phase matchable. lt has high damage threshold, exceHent optical quality, is less hygroscopic than KDP, and are easily fabricated into nonlinear devices. In this work we present the results of several tests to evaluate its thermal, mechanical, and chemical stabilities. It was found that LAP crystals are stable under temperatures up to 100&#176C. If this material is submited to processes involving the generation of considerable amount of heat, e.g. during cutting or diamond turning or due to high power lasers, it is recommended not to exceed the 100&#176C limit to ensure that crystal properties remain unchanged
4

Stress Analysis on Adhesive Bonded Joint of Composite Tube due to Torsion

Wang, Wei-Te 07 September 2001 (has links)
The purpose of this thesis is aimed to predict that what kind of adhesive bonded joint of composite tube the can obtain more efficient structure. APC-2 sixteen-layer laminates of AS-4/PEEK were used as adherends, including cross-ply [0/90]4S and quasi-isotropic [0/45/90/-45]2S laminates. And we use two different kinds of adhesive bonded joints, including stepped lap joint and scarf lap joint. On the aspect of numerical analysis, we employ finite element method incorporate with the software of ANSYS 5.5.1 to obtain the distribution of stress on adhesive bonded joint. In this thesis, there are two kinds of geometrical shape on stepped lap joint. The bonded layer height h that is vertical to the axis of the composite tube is 2mm and 5mm. There are also two kinds of the geometrical shape on scarf lap joint. The angle £\ between the bonded layer and the axis of the composite tube is 30¢Xand 45¢X.The boundary condition on one side of the composite tube is assumed to be fixed. The other side of the composite tube is due to torsion. According to the numerical result, the stepped lap joint with h=5mm and quasi-isotropic [0/45/90/-45] occurs minimum von Mises stress, and we predict this kind of joint can sustain the maximum external load and obtain better efficiency. In this thesis, the geometrical shape, size and the direction of laminates of the joint will effect the distribution of stress.
5

Ensaios termo-mecanicos e quimicos em cristais de l-arginina fosfatada monohidratada (LAP) / Thermo-mechanical and chemical tests in L-arginine phosphate monohydrate (LAP) crystals

Antonio Norio Nakagaito 12 March 1999 (has links)
L-arginina fosfatada monohidratada (LAP) é um cristal semiorgânico altamente transparente com propriedades atrativas para conversão de freqüência. É facilmente crescido a partir de solução aquosa e apresenta casamento de fase para todos os processos não-lineares onde o KDP é casável em fase. Apresenta alto limiar de dano, excelente qualidade óptica, é menos higroscópico que o KDP e dispositivos não-lineares podem ser facilmente fabricados a partir deles. Neste trabalho apresentamos os resultados de diversos ensaios para avaliar a sua estabilidade térmica, mecânica e química. Concluiu-se que o cristal de LAP é estável para temperaturas inferiores à 100&#176C. Quando o material for submetido à processos que envolvem geração de grande quantidade de calor, tais como processamento do material por corte ou tomeamento (diamond tuming), ou em sistemas com lasers de alta intensidade, recomenda-se não exceder o limite de 100&#176C para assegurar que as propriedades do material não sejam alteradas / L-arginine phosphate monohydrate (LAP) is a highly transparent semiorganic crystal with atractive properties for frequency conversion. It is easily grown from aqueous solution, and it is phase matchable for alI nonlinear processes where KDP is phase matchable. lt has high damage threshold, exceHent optical quality, is less hygroscopic than KDP, and are easily fabricated into nonlinear devices. In this work we present the results of several tests to evaluate its thermal, mechanical, and chemical stabilities. It was found that LAP crystals are stable under temperatures up to 100&#176C. If this material is submited to processes involving the generation of considerable amount of heat, e.g. during cutting or diamond turning or due to high power lasers, it is recommended not to exceed the 100&#176C limit to ensure that crystal properties remain unchanged
6

A study of the commercial strategy for an airport /

Lam, Shuk-ha, Sophia, January 2002 (has links)
Thesis (M.A.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 71-74).
7

A study of the commercial strategy for an airport

Lam, Shuk-ha, Sophia, January 2002 (has links)
Thesis (M.A.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 71-74) Also available in print.
8

Studies on friction stir lap welding of Cu-Ni alloy and low carbon steel

Chen, Hui-Lin 26 August 2010 (has links)
In this study, the experimental apparatus with a friction stir welding dynamometer was employed to investigate the joint characteristics of Cu-Ni alloy plate in thickness of 3.6mm lap-welding to low carbon steel plate in thickness of 4 mm using cylinder type tool (without probe) under the welding parameters of rotating speeds (800~1400 rpm) and traveling speed of tool (10~80 mm/min). To prevent the joint interface from oxidizing during the welding process, the joint interfaces of Cu-Ni alloy and low carbon steel respectively were electroplated with Ni coating layer in different thicknesses before the welding. The effect of the thickness of Ni coating layer on shear strength of joint interface and the mechanism of welding are also investigated. Experimental results show that under the rotating speed of 1000 rpm and travelling speed of 10 mm/min, the shear strength for without Ni coating layer is measured about 100 MPa. On the other hand, the shear strength is increased to saturated value of 290 MPa with increasing the thickness of Ni coating layer. Especially, the shear strength of joint interface for the Cu-Ni alloy with 5£gm thickness of Ni coating layer lap-welding to low carbon steel with thickness of 20£gm thickness of Ni coating layer is about 2.9 times of that for without Ni coating layer. Moreover, the downward force (Fd) is decreased and the maximum interface temperature (Tmax) and shear strength (£n) are increased with increasing the rotating speed (N). The downward force is increased and the maximum interface temperature and shear strength are decreased with increasing the traveling speed (f). This complex relationship is discussed by the new parameter of Fd¡EN/f, the relationship among Fd¡EN/f, maximum interface temperature and shear strength shows that the maximum interface temperature is increased and shear strength is increased to saturated value of 290 MPa with increasing Fd¡EN/f. The phenomenon is explained that the diffusion bonding between the joint interface of two plates become more homogeneous.
9

A review of passenger transport services to and from the Hong Kong International Airport /

Rim, Ka-fai, January 2002 (has links)
Thesis (M.A.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 97-107).
10

Review on the development & construction management of the airport in Chek Lap Kok /

Yiu, Shuk-man, Agnes. January 1998 (has links)
Thesis (M. Sc.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 114-115).

Page generated in 0.0262 seconds