• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 12
  • 11
  • 10
  • 9
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 103
  • 18
  • 17
  • 17
  • 13
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Temporal changes in gas hydrate mound topography and ecology: deep-sea time-lapse camera observations

Vardaro, Michael Fredric 30 September 2004 (has links)
A deep-sea time-lapse camera and several temperature probes were deployed on the Gulf of Mexico continental shelf at a biological community associated with a gas hydrate outcropping to study topographic and hydrologic changes over time. The deployment site, Bush Hill (GC 185), is located at 27°47.5' N and 91°15.0' W at depths of ~540m. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. Temperature probes were in place at the site for the entire experimental period. The data recovered provide a record of processes that occur at gas hydrate mounds. Biological activity was documented by identifying the fauna observed in the time-lapse record and recording the number of individuals and species in each image. 1,381 individual organisms representing 16 species were observed. Sediment resuspension and redistribution were regular occurrences during the deployment periods. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time, the turbidity at the site was quantified. A significant diurnal pattern can be seen in both luminosity and temperature records, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop at this site on the time frame of this study. This indicates that this particular mound was more stable than suggested by laboratory studies and prior in situ observations. The stable topography of the gas hydrate mound combined with high bacterial activity and sediment turnover appears to focus benthic predatory activity in the mound area. The frequency and recurrence of sediment resuspension indicates that short-term change in the depth and distribution of surface sediments is a feature of the benthos at the site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short-term variability and heterogeneity may be important characteristics of these settings.
12

Physical activity lapses and parental social control

Wilson, Kathleen Sara 11 August 2008
Although physical activity has been identified as important for children and adolescents health, a majority are not active enough to receive health benefits. Given that physical activity lapses have been identified in adolescents, and social influences have been related to physical activity, the overall purpose of this dissertation was to explore the social influences that occur following a lapse by using a social control framework. Three studies were conducted to examine whether physical activity lapses would be associated with parental use of social control (Study 1 and 2) as well as whether this use of different social control types would be associated with changes in behaviour (Study 2 and 3) and affect (Study 3). Results from Study 1 revealed that parents reported the use of three types of social control (i.e., positive, collaborative, and negative) following a hypothetical physical activity lapse. Results from Study 2 revealed that adolescents who experienced a lapse reported greater increases in the use of positive and collaborative social control if they had an active family. Changes in social control also were associated adolescents recovery from a lapse, with collaborative social control emerging as the strongest social control type. Results from the third study revealed that each of the three types of social control were associated with behaviour change, but in a different way. Behaviour change was associated with the use of collaborative social control, the need for congruence between preferences and use for positive social control, and the perceptions of negative social control as supportive. Perceived supportiveness for all tactics was related to affect. These results provide preliminary support for the suggestion that social control may be one framework to help explain the use of parental social influences following a lapse. Future directions and complementary theories are discussed.
13

Regulation of Aurora A activity during checkpoint recovery

Zhou, Yan January 2012 (has links)
Cell division requires accurate DNA replication and cells develop checkpoint mechanisms toensure the correct passage of the genetic material. Cells arrest by a checkpoint when DNAdamage is found. After the checkpoint is silenced, the cell cycle can be resumed. Polo-likekinase 1 (Plk1) and Aurora A kinase (AurA) are both important regulators for checkpointrecovery. The question how AurA is activated was studied by many researchers, but the exactmechanism stays unclear.We developed a new setup to study AurA activation during checkpoint recovery. Quantitativeimmunofluorescence of fixed cells as well as a FRET probe that monitors Plk1 activity intime-lapse filming were applied in this study as indirect readouts of Aurora A activation. Theresult suggests that a Plk1-AurA feedback loop exists during checkpoint recovery. It can alsobe concluded that the inhibition of Cdk1 reduces Plk1 and AurA activity during checkpointrecovery. We also investigated the effect of calcium interfering drugs on AurA activation butno conclusive result was obtained.
14

Physical activity lapses and parental social control

Wilson, Kathleen Sara 11 August 2008 (has links)
Although physical activity has been identified as important for children and adolescents health, a majority are not active enough to receive health benefits. Given that physical activity lapses have been identified in adolescents, and social influences have been related to physical activity, the overall purpose of this dissertation was to explore the social influences that occur following a lapse by using a social control framework. Three studies were conducted to examine whether physical activity lapses would be associated with parental use of social control (Study 1 and 2) as well as whether this use of different social control types would be associated with changes in behaviour (Study 2 and 3) and affect (Study 3). Results from Study 1 revealed that parents reported the use of three types of social control (i.e., positive, collaborative, and negative) following a hypothetical physical activity lapse. Results from Study 2 revealed that adolescents who experienced a lapse reported greater increases in the use of positive and collaborative social control if they had an active family. Changes in social control also were associated adolescents recovery from a lapse, with collaborative social control emerging as the strongest social control type. Results from the third study revealed that each of the three types of social control were associated with behaviour change, but in a different way. Behaviour change was associated with the use of collaborative social control, the need for congruence between preferences and use for positive social control, and the perceptions of negative social control as supportive. Perceived supportiveness for all tactics was related to affect. These results provide preliminary support for the suggestion that social control may be one framework to help explain the use of parental social influences following a lapse. Future directions and complementary theories are discussed.
15

Temporal changes in gas hydrate mound topography and ecology: deep-sea time-lapse camera observations

Vardaro, Michael Fredric 30 September 2004 (has links)
A deep-sea time-lapse camera and several temperature probes were deployed on the Gulf of Mexico continental shelf at a biological community associated with a gas hydrate outcropping to study topographic and hydrologic changes over time. The deployment site, Bush Hill (GC 185), is located at 27°47.5' N and 91°15.0' W at depths of ~540m. The digital camera recorded one still image every six hours for three months in 2001, every two hours for the month of June 2002 and every six hours for the month of July 2002. Temperature probes were in place at the site for the entire experimental period. The data recovered provide a record of processes that occur at gas hydrate mounds. Biological activity was documented by identifying the fauna observed in the time-lapse record and recording the number of individuals and species in each image. 1,381 individual organisms representing 16 species were observed. Sediment resuspension and redistribution were regular occurrences during the deployment periods. By digitally analyzing the luminosity of the water column above the mound and plotting the results over time, the turbidity at the site was quantified. A significant diurnal pattern can be seen in both luminosity and temperature records, indicating a possible tidal or inertial component to deep-sea currents in this area. Contrary to expectations, there was no major change in shape or size of the gas hydrate outcrop at this site on the time frame of this study. This indicates that this particular mound was more stable than suggested by laboratory studies and prior in situ observations. The stable topography of the gas hydrate mound combined with high bacterial activity and sediment turnover appears to focus benthic predatory activity in the mound area. The frequency and recurrence of sediment resuspension indicates that short-term change in the depth and distribution of surface sediments is a feature of the benthos at the site. Because the sediment interface is a critical environment for hydrocarbon oxidation and chemosynthesis, short-term variability and heterogeneity may be important characteristics of these settings.
16

Time lapse HDR: time lapse photography with high dynamic range images

Clark, Brian Sean 29 August 2005 (has links)
In this thesis, I present an approach to a pipeline for time lapse photography using conventional digital images converted to HDR (High Dynamic Range) images (rather than conventional digital or film exposures). Using this method, it is possible to capture a greater level of detail and a different look than one would get from a conventional time lapse image sequence. With HDR images properly tone-mapped for display on standard devices, information in shadows and hot spots is not lost, and certain details are enhanced.
17

The maximum time interval of time-lapse photography for monitoring construction operations

Choi, Ji Won 01 November 2005 (has links)
Many construction companies today utilize webcams on their jobsites to monitor and record construction operations. Jobsite monitoring is often limited to outdoor construction operations due to lack of mobility of wired webcams. A wireless webcam may help monitor indoor construction operations with enhanced mobility. The transfer time of sending a photograph from the wireless webcam, however, is slower than that of a wired webcam. It is expected that professionals may have to analyze indoor construction operations with longer interval time-lapse photographs if they want to use a wireless webcam. This research aimed to determine the maximum time interval for time-lapse photos that enables professionals to interpret construction operations and productivity. In order to accomplish the research goal, brickwork of five different construction sites was videotaped. Various interval time-lapse photographs were generated from each video. Worker?s activity in these photographs was examined and graded. The grades in one-second interval photographs were compared with the grades of the same in longer time interval photographs. Error rates in observing longer time-lapse photographs were then obtained and analyzed to find the maximum time interval of time-lapse photography for monitoring construction operations. Research has discovered that the observation error rate increased rapidly until the 60-second interval and its increasing ratio remained constant. This finding can be used to predict a reasonable amount of error rate when observing time-lapse photographs less than 60-second interval. The observation error rate with longer than 60-second interval did not show a constant trend. Thus, the 60-second interval could be considered as the maximum time interval for professionals to interpret construction operations and productivity.
18

High-Temporal Resolution Photography for Observing Riparian Area Use and Grazing Behavior

Nichols, M.H., Ruyle, G.B., Dille, P. 07 1900 (has links)
Observation is a simple method of acquiring information and is a critical step in the scientific method for both developing and investigating testable hypotheses. Cameras have long played a role in observation, and as technology advances, new tools and methods for collecting, interrogating, and displaying large quantities of high-resolution images have evolved. We describe an automated digital time-lapse camera system and present an example field deployment to observe the temporal and spatial patterns of riparian use by humans and animals during a 3-mo period. We also describe software tools for image interrogation and visualization, as well as new information gathered through their use. The system was tested in 2014, in a 2.4-ha site within the ApacheSitgreaves National Forest in east central Arizona, United States where elk (Cervus elaphus nelsoni) and cattle grazed. Photographs were taken every 30 sec for 38 d, after which an electric fence was installed to restrict cattle access and the time step was increased to every 3 min. We observed that elk exhibited the unique behavior of standing in and traveling within the stream channel while grazing and tended to graze and lie in close proximity to the channel. Cattle drank from, but typically did not enter, the stream channel and tended to lie away from the channel. Recreational use by people had the distinct impact of dispersing elk from the riparian corridor. Zoomable time-lapse videos allowed us to observe that in contrast to the cattle, elk grazed while lying down. High-temporal resolution photography is a practical tool for observing phenomena that are important for local resource management. Published by Elsevier Inc. on behalf of The Society for Range Management.
19

Time-lapse Geophysical Investigations over Known Archaeological Features Using Electrical Resistivity Imaging and Earth Resistance

Fry, Robert J. January 2014 (has links)
Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.
20

Aplicação de microscopia de série temporal para o estudo da expressão gênica e montagem do divisomo em Bacillus subtilis / Aplications of time-lapse microscopy to study gene expression thoughout cell cycle and divisome assembly in Bacillus subtilis

Rados, Theopi Alexandra Varvakis 21 May 2013 (has links)
A divisão celular nas bactérias requer a formação do divisomo, um complexo protéico que tem como o primeira etapa a polimerização da proteína FtsZ, seguida pela associação de 15 outras proteínas conhecidas. Os mecanismos envolvidos na regulação espacial do divisomo são bem caracterizados, mas o controle temporal da divisão celular em relação a outros eventos do ciclo, como a replicação do cromossomo, segue controversa. Neste trabalho, aplicamos a metodologia de microscopia de série temporal para estudar duas questões fundamentais do processo de divisão: a montagem do complexo que executa a divisão e a possibilidade da oscilação periódica na expressão de um ou mais genes envolvidos em divisão possa participar do controle temporal da montagem do divisomo. Para investigar se há oscilação da expressão gênica, construímos inicialmente variantes instáveis GFP através da adição de sequências peptídicas C-terminais que encaminham para a degradação em B. subtilis e utilizamos estes repórteres para criar fusões transcricionais sob o controle de promotores de genes centrais do processo de divisão. Depois de otimizar as condições de microscopia de série temporal com fusões transcricionais usando a variante instável GFPAISV, observamos que a autofluorescência de B. subtilis interferia nas nossas quantificações. Como forma de contornar a autofluorescência, construímos então fusões transcricionais com duas variantes de YFP (proteína fluorescente amarela) e optamos por trabalhar com Ypet-AISV. A análise de filmes de células individuais, tanto com fusões a GFPAISV como a Ypet-AISV, indicou que apenas o promotor do operon ftsL-pbpB apresentava um padrão de oscilação significativamente diferente de um promotor artificial usado como controle negativo. Esta hipótese, no entanto, não foi confirmada por medidas estáticas de populações de células nas quais correlacionamos intensidade de fluorescência com posição no ciclo celular. Portanto, nossos dados não foram capazes de evidenciar flutuações na expressão dos genes ftsL-pbpB, minCD, ftsZ, ftsA e zapA ao longo do ciclo celular. Para estudar a cinética de montagem divisomo foram realizados experimentos de microscopia de série temporal de FtsZ-mCherry e Pbp2B-GFP, onde observamos que a associação de Pbp2B ao divisomo ocorre 3 minutos após a formação do anel de FtsZ em meio rico e 4 minutos em meio mínimo. Também realizamos experimentos de microscopia de série temporal com uma cepa contendo FtsZ-YFP e DivIVA-CFP, determinando que DivIVA é incorporado ao divisomo 16 minutos após a formação do anel de FtsZ em meio rico e 20 minutos em meio mínimo. Estes dados confirmam que a montagem do divisomo ocorre em três etapas, e não duas, como anteriormente proposto. / Cell division in bacteria requires the formation of the divisome, a protein complex that has as the first step polymerization of FtsZ, followed by the assembly of 15 other known proteins. The mechanisms that underlie spatial regulation of divisome assembly have been largely elucidated, but the temporal control that ties the timing of cell division to other cell cycle events, such as chromosomal replication, remains surrounded by controversy. In this work, we use time-lapse microscopy to address two issues in B. subtilis cell division: the timing of divisome assembly, and the possibility that a periodic oscillation in expression of one or more genes essential for divisome assembly may play a role in defining the timing of cell division. To study the possibility of oscilation in gene expression, we have first built unstable variants of GFP by adding to its C-terminus peptide sequences that target the protein for degradation and used those variants to build transcriptional fusions to access the promoter activity of core cell division genes. After optimizing time-lapse conditions with transcriptional fusions to cell divison genes with the unstable GFPAISV, we observed that B. subtilis autofluorescence was an issue to our quantifications. To improve our signal-to-noise ratio, we built transcriptional fusions with two variants of YFP (Yellow Fluorescent Protein), and decided to work with Ypet. In our single-cell analysis for GFPAISV and for Ypet-AISV, only the ftsL operon promoter presented an oscilating pattern different from our negative control. This was not confirmed, however, when we attempted to correlate fluorescence signal with cell cycle position in static single-cell measurements. Thus, we conclude that that there are no fluctuations in ftsL, pbpB, minCD, ftsZ, ftsA or zapA gene expression throughout the cell cycle. To study divisome assembly we performed time-lapse microscopy of FtsZ-mCherry and Pbp2B-GFP, and determined that the association of Pbp2B occurs 3 minutes after FtsZ polymerization in rich medium and 4 minutes in minimal medium. We also performed time-lapse microscopy with FtsZ-YFP and DivIVA-CFP, determining that DivIVA is incorporated to the divisome in 16 minutes after FtsZ polymerization in rich medium and 20 minutes in minimal medium. This data confirms the assembly of the divisome in three steps rather than two, as previously proposed.

Page generated in 0.3633 seconds