• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Illumination for Real-Time Rendering of Large Architectural Environments

Fahlén, Markus January 2006 (has links)
<p>This thesis explores efficient techniques for high quality real-time rendering of large architectural environments using affordable graphics hardware, as applied to illumination, including window reflections, shadows, and "bump mapping". For each of these fields, the thesis investigates existing methods and intends to provide adequate solutions. The focus lies on the use of new features found in current graphics hardware, making use of new OpenGL extensions and functionality found in Shader Model 3.0 vertex and pixel shaders and the OpenGL 2.0 core. The thesis strives to achieve maximum image quality, while maintaining acceptable performance at an affordable cost.</p><p>The thesis shows the feasibility of using deferred shading on current hardware and applies high dynamic range rendering with the intent to increase realism. Furthermore, the thesis explains how to use environment mapping to simulate true planar reflections as well as incorporates relevant image post-processing effects. Finally, a shadow mapping solution is provided for the future integration of dynamic geometry.</p>
2

Illumination for Real-Time Rendering of Large Architectural Environments

Fahlén, Markus January 2006 (has links)
This thesis explores efficient techniques for high quality real-time rendering of large architectural environments using affordable graphics hardware, as applied to illumination, including window reflections, shadows, and "bump mapping". For each of these fields, the thesis investigates existing methods and intends to provide adequate solutions. The focus lies on the use of new features found in current graphics hardware, making use of new OpenGL extensions and functionality found in Shader Model 3.0 vertex and pixel shaders and the OpenGL 2.0 core. The thesis strives to achieve maximum image quality, while maintaining acceptable performance at an affordable cost. The thesis shows the feasibility of using deferred shading on current hardware and applies high dynamic range rendering with the intent to increase realism. Furthermore, the thesis explains how to use environment mapping to simulate true planar reflections as well as incorporates relevant image post-processing effects. Finally, a shadow mapping solution is provided for the future integration of dynamic geometry.

Page generated in 0.09 seconds