• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 97
  • 39
  • 31
  • 31
  • 31
  • 31
  • 31
  • 31
  • 14
  • 8
  • 6
  • 5
  • 4
  • 4
  • Tagged with
  • 527
  • 53
  • 52
  • 51
  • 50
  • 45
  • 34
  • 30
  • 30
  • 29
  • 29
  • 27
  • 27
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

The impact of restricted access to atmospheric oxygen on the survival and development of Aedes aegypti (Diptera:Culicidae) pre-imagos /

Cyr, Hélène January 2003 (has links)
No description available.
372

Interactions Between The Nudibranch Okenia Zoobotryon And Its Bryozoan

Robinson, Nicole 01 January 2004 (has links)
In the Indian River Lagoon, the nudibranch Okenia zoobotryon and its egg masses are found attached to the bryozoan Zoobotryon verticillatum throughout the year. Okenia zoobotryon is thought to live, feed, and reproduce exclusively on Z. verticillatum, which would make this a very specialized predator-prey interaction. The primary goal of my study was to document certain aspects of the ecological and chemical relationships between Z. verticillatum and O. zoobotryon. Specifically, I wanted to understand the cues used by the nudibranch to locate and remain on Z. verticillatum. Population surveys on Z. verticillatum, as well as other potential hosts, were performed. From these surveys, I found a small number of O. zoobotryon adults and egg masses on the red macroalga S. filamentosa mixed with Z. verticillatum (0.01 and 0.05 g/wet-weight, respectively), none on the bryozoan Amathia distans, and none on the red macroalga Gracilaria tikvahiae. To determine if prey identification was associated with an adult cue, I ran paired-choice trials. In these, the adults did not significantly prefer Z. verticillatum. Next, laboratory culture of larvae of O. zoobotryon was performed. During larval culture some aspects of this previously undocumented life-history were recorded; adults of this species developed from planktotrophic veliger larvae that hatched out of egg masses between 4 and 6 days, the time post-hatching to settlement was 7-8 days, and metamorphosis occurred approximately 24 hours after settlement. The final question addressed in this study was; "Does O. zoobotryon feed on and take up chemicals from Z. verticillatum?" To address this question, high-performance liquid chromatography was performed on extracts of Z. verticillatum and O. zoobotryon. Both organisms were compared and found to contain similar compounds, which suggest that the nudibranch is feeding on Z. verticillatum and taking up chemicals. Concentrations of compounds in Z. verticillatum varied between populations in the northern and southern regions of the Indian River Lagoon. There are, also, differences between the chemical composition of Z. verticillatum in the IRL (northern and southern) and the California species identified by Sato and Fenical (1983).
373

Detection of respiratory gas levels by internal sensory neurons in Drosophila larvae

Lu, Shan January 2022 (has links)
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the nervous system for maintaining homeostasis and survival. Across species, such neurons innervate visceral organs to detect and relay information about their chemical and physical state to the central nervous system (CNS). While electrophysiology experiments over several decades have revealed a wide of range of stimuli that can activate internal sensory neurons, how stimuli are detected at the cellular and molecular level is only beginning to be elucidated. To elucidate the cellular and molecular basis of chemosensation by internal neurons, I used a population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, as the model system for my thesis work.I first presented a detailed characterization of the morphology of td neurons and their association with the tracheal system. I found that td dendrites extend along tracheal epithelial cells across their whole length. I further described that td dendrites extend to tracheal fusion sites, and can be observed terminating as enlarged bulbs adjacent to the tube enlargements. This specialized structure formed by td dendrites in relation to the nearby tracheal tissues may serve as an end organ for td sensory functions. I then proceeded to test the sensory functions of the td neurons. I found that td neurons respond to respiratory gases, namely decreases in O2 levels and increases in CO2 levels. Furthermore, I assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. I found that Gyc88E/Gyc89Db are necessary for td responses to hypoxia, and that Gr28b is necessary for td responses to CO₂. Rescue of Gr28b isoform c rescued the mutant phenotype and also generalized the response to CO₂ in the td network. Additionally, I presented data suggesting carbonic anhydrases from surrounding tissues are required for td responses to CO₂, further elucidating the sensory transduction pathway of internal CO₂ detection. I further showed that gas-sensitive td neurons are activated when larvae burrow for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. I also found that Drosophila larvae tend to avoid their td neurons being activated, suggesting td activation is aversive to the animals. Together, my work identified two stimuli that are detected by partially overlapping subsets of internal sensory neurons, and established roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b together with carbonic anhydrases in the detection of CO₂. Combined with our previous understanding, different td neurons express various combinations of chemosensory receptors and have distinct functions, some of which remain to be discovered, indicating that this is a multifunctional internal sensory system. In conclusion, the results I presented in my thesis established new sensory detection pathways of Drosophila larval internal sensory neurons, which may be generalized across species and facilitate understanding of internal sensory systems.
374

Pharmacological Rescue of Parkinson's Disease Symptoms with <i>Drosophila</i> Larvae

Podolsky, Eric 15 July 2015 (has links)
No description available.
375

Identification of Stress-Responsive Genes in the Early Larval Stage of the Fathead Minnow <i>Pimephales Promelas</i>

Lewis, Solange Smita 03 April 2006 (has links)
No description available.
376

Impacts of Urbanization and Flow Permanence on Headwater Stream Macroinvertebrates (Hamilton County, Ohio)

Lubbers, Hannah R. 04 August 2009 (has links)
No description available.
377

Thermal Tolerance Limits and Cardiac Acclimation Potential of Sablefish (Anoplopoma fimbria) Embryos and Yolk-Sac Larvae Incubated at Different Temperatures

Schellenberg, Chrissy 22 September 2022 (has links)
Average global ocean temperatures and the frequency and intensity of marine heat waves have been increasing over the last century. Temperature plays a critical role in defining the geographical range of the majority of marine species. Some species may respond to ocean warming trends by shifting their latitudinal and depth ranges, while others may be able to cope with changes in temperature through phenotypic plasticity and local adaptations. If a species is unable to shift its distribution or has limited thermal plasticity, it may face severe population declines or local extinction. Therefore, describing thermal tolerance limits is a useful tool for predicting how a given species will respond to ocean warming. Due to its commercial importance, sablefish (Anoplopoma fimbria) is a fish species of particular interest in British Columbia. Sablefish are semi-demersal and spawn along the continental slopes of the Pacific coast from California to Alaska. Their various life history stages occupy different depth strata and thus experience substantially different environments with respect to temperature (as well as salinity, oxygen, etc.). Adult sablefish spawn at depths that exceed 300 m and embryos sink to depths of ~1,000 m after fertilization. Embryos hatch into yolk-sac larvae until they become mobile at the post-yolk-sac larvae stage. The latter migrate to near-surface waters (<3 m) at which temperatures are approximately 12-15°C in the late spring. Heart rate is a temperature-dependent performance measure and has been used to gain insight into the thermal tolerance of many adult fishes. However, few studies have used this approach with the early life stages of fishes such as embryos and yolk-sac larvae (YSL). The purpose of this study was to assess whether sablefish embryos and YSL have the potential for cardiac acclimation by examining changes in their thermal tolerance limits when incubated at temperatures outside of what they experience in a natural setting (~5°C). Cardiac performance was assessed during an acute temperature challenge from 2.0° to 12.0°C in increments of 1.0°C (at a rate of 1°C 40 min-1) for individuals incubated at 3.0°C, 5.0°C (control), and 7.0°C. Embryos were video recorded at each 1.0°C increment and videos were viewed at a later date to determine heart rate at each temperature. This study attempted to use temperature breakpoint analysis, commonly used in studies of adults, on these early life stages to assess cardiac performance. It was hypothesized that sablefish embryos and yolk-sac larvae incubated at warmer temperatures would have a higher thermal tolerance than sablefish embryos and YSL incubated at colder temperatures, as seen in other fish species. There was some degree of thermal compensation of cardiac function with temperature in sablefish embryos and YSL as mean heart rate increased with incubation temperature throughout acute warming. YSL had consistently higher mean heart rate values at any given temperature of the acute temperature challenge when compared to embryos incubated at the same temperature. TAR is the temperature at which the heart first becomes arrhythmic is considered a sub-lethal index because the organism is expected to experience cardiac collapse soon after. TAR was reached for 100% of embryos incubated at 3.0°C at an average temperature of 8.6 ± 1.0°C. In contrast, only 18% and 33% of embryos incubated at 5.0° and 7.0°C exhibited arrhythmia (mean TAR were 9.0 ± 3.0 and 8.5± 1.5°C, respectively). The lower thermal limit for embryos incubated at 7.0°C was likely near 1.0°C, which was determined during preliminary testing. Neither the upper or lower limits were reached for YSL during the acute temperature challenge. No mortalities were observed during any acute temperature challenges. Overall percent mortality throughout the entirety of the experiment could not be determined due to limitations in the experimental setup and reduced staff working on this project due to COVID-19 safety protocols. This study is also the first to investigate whether transporting sablefish embryos from a hatchery to a research facility at different stages of development had an effect on their cardiac performance during acute warming. Embryos were transported in a cooler from the sablefish hatchery on Salt Spring Island to UVic via ferry and vehicular transport. Time of transportation did not significantly change the temperature at which heart rate reaches its maximum or TAR. There was also consistent overlap in mean heart rate ± standard error at each temperature of the acute temperature challenge between these two groups. Therefore, there appears to be no indication that transportation affected the heart rate response of sablefish embryos when incubated at the same temperature. However, future studies may want to confirm this by identifying and comparing other breakpoint temperatures that characterize physiological performance. Determining whether transportation has effects on cardiac performance may be of interest to other researchers who need to transport fish embryos from the field to the laboratory. Heart rate measurements during an acute temperature challenge of sablefish embryos and yolk-sac larvae (YSL) incubated at various temperatures provided initial insight to their overall success in a warming climate. Currently, it is projected that waters at depths of 1,000 m will warm on average by less than a degree by the end of the 21st century. The results of this study suggest that the early life stages of sablefish may not be exposed to critical temperatures in the near future, but future impacts on overall physiological decline remain unknown. The novel data presented here lay the groundwork for future researchers to continue to characterize the thermal tolerances of the early life stages of sablefish, and the likely response of this important species to ocean warming. / Graduate
378

Nutritional control of gene expression, larval development and physiology in fish

Salze, Guillaume Pierre 11 December 2008 (has links)
During preliminary research on cobia (Rachycentron canadum, L.) it became increasingly clear that more in-depth information was required to provide enabling techniques for the cobia aquaculture industry to develop more rapidly. A unifying theme in many of the more important issues facing cobia aquaculture is nutrition. This led to nutritional investigations with larval and juvenile fish highlighting the impacts of dietary ingredients on animal performance. Indeed, nutrition can be viewed as a central lever of action through which many aspects of the physiology and the environmental (water) quality of the animal can be controlled. The first project focused on studying the larval development of cobia, a fish species highly suitable for aquaculture for which the industry is nascent. I described the time-course of development of external sensory organs, gut morphology and relevant digestive enzymes under controlled conditions using electron microscopy, histology and spectrophotometric assays. The developmental sequence of larval cobia could be separated in two phases, with a transition period between 12 and 14 days post hatch (dph). This transition is characterized by the formation of the intestinal loop, the establishment of basic cranial neuromast configuration, leading to the initiation of the onset of pancreatic enzymes and the increase of growth rate. In addition, the effects of dietary taurine supplementation and incorporation of mannan oligosaccharides (MOS) into live feeds on cobia larvae development was examined. Fish fed supplementary MOS did not grow faster but displayed higher microvilli length and density. In addition, MOS-fed fish were more resistant to salinity stress. The dietary supplementation of taurine resulted in a dramatic increase in survival, growth and development rates, and enzymatic activities. The second project aimed at refining cobia juvenile nutrition, assessing fish meal and fish oil replacements. Novel sources, including soy protein and oil, were investigated with and without amino acid and MOS supplementations, yielding promising results. Indeed, both fish meal and fish oil were replaced completely and successfully in feeds for juvenile cobia. In addition, novel ingredients (e.g. marine algae meals and soy protein concentrate) were identified to effectively achieve such replacement. The third and last project dealt with nutrient-gene interactions, specifically centering attention on immunostimulants for which the underlying mechanisms of action remain poorly characterized. Here, dietary MOS, nucleotides and selenomethionine (Se-met) were offered to zebrafish whose transcriptome was analyzed by microarray. The immune system, humoral or cellular, innate or adaptive, exhibited different patterns of response according to the immunostimulating nutrient used. In addition, various genes involved in cell cycle and cytokinesis were concomitantly expressed. An intriguing observation related to the insulinomimetic effect of Se-met. In other words, Se-met impacted pathways normally regulated by insulin, such as the MAPK and PI3K pathways. Some Insulin-like Growth Factors (IGF) and IGF bindgin proteins were up-regulated. Additional research is however necessary prior to advocating for the use of these additives, in order to further investigate their respective pros and cons. / Ph. D.
379

Biology of immature Culicoides variipennis ssp. australis (Coq.) (Diptera:Ceratopogonidae) at Saltville, VA

Vaughan, Jefferson Archer January 1985 (has links)
The larval and pupal biology of a unique population of gulicoides variipennis inhabiting the brine ponds of Saltville, VA was studied. Developmental threshold temperatures (OC) and thermal constants (Odays) for larvae and pupae were 9.6OC and 387Odays (larval stage) and 9.6OC and 3OOdays (pupal stage) respectively. Accumulated heat units recorded in the field ranged from 366—376Odays between successive generations in the summer. Heat accumulations required for completion of immature development of Q. variipennis were found to be much greater (83lOdays) for the overwintering generation. During the summer, larval/pupal distribution within the littoral zone of a brine pond was confined to the surface cm of mud at or near the shoreline. Insects overwintered farther offshore, mostly as 3rd instars. In ear1y' March, most larvae had xnolted to 4th instars and migrated above shoreline to pupate. Adult emergence occurred in April. Three summer generations were documented for 1983-1984 at Saltville._ Life tables and survivorship curves were calculated for the overwintering generation and the first summer generations for 1983 and 1984. For the overwintering generation, there was a relatively constant mortality rate between successive ageclasses (Type II survivorship curve). During the summer, there was relatively little mortality between successive larval age—classes but a dramatic increase in mortality was evident at the pupal stage (Type I survivorship curve). Late instar larvae were found to migrate from the shoreline onto the exposed mudflats to pupate, thus becoming vulnerable to predation by ants and carabid beetles. Excellent survival rates of the larvae during the summer was attributed to habitat stability, the paucity of predators and parasites and abundant microfloral content (i.e. food} of the pond water. Intra-specific competition for food resources appeared to be alleviated somewhat by partitioning of those resources on a diurnal cycle. / Ph. D.
380

A study of a species of Beauveria from Dendroctonus frontalis

Martland, John Gardner January 1941 (has links)
Master of Science

Page generated in 0.0265 seconds