• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 21
  • 9
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computing and measuring the flowfield in a de-oiling hydrocyclone

Hargreaves, John H. January 1990 (has links)
No description available.
2

Laser-based measurements of two-phase flashing propane jets

Allen, John Thomas January 1998 (has links)
No description available.
3

Computational and experimental studies of flow through a plate valve

Nasr, Ahmed January 1993 (has links)
No description available.
4

Application of laser anemometry in acoustic measurement standards

MacGillivray, Thomas Joseph January 2002 (has links)
The absolute measurement of acoustic particle velocity using Laser Doppler Anemometry (LDA) provides the basis for a method of microphone calibration. In this thesis, after the current standardized calibration method (called reciprocity) is explained, the application of LDA to the determination of sound pressure acting on a microphone is discussed. From a measurement of the output voltage for a given sound pressure, the sensitivity of the microphone can be calculated. In LDA, there are two different techniques for detecting and analysing the Doppler signal generated by acoustic particle motion: continuous detection followed by frequency or time domain analysis, and photon correlation. After a brief discussion of the theory of both methods, their application to measurements within a standing-wave tube is investigated. Velocity measurements extracted from Doppler signals are used to derive values of sound pressure, which are compared with probe microphone measurements. The continuous detection and photon correlation LDA systems are used to measure particle velocity amplitude in a standing wave for frequencies between 660 Hz and 4kHz and velocities between 1 mms⁻¹ and 18 mms⁻¹. LDA is applied to the measurement of microphone sensitivity. The frequency response of the probe microphone is characterized relative to the response of a reference microphone. From the frequency response information, the output voltage of the probe microphone, and the LDA derived sound pressure in a standing wave the sensitivity of the reference microphone is established. Using the continuous detection system, the microphone sensitivity is measured to within ±0.1 dB of the sensitivity obtained by reciprocity calibration for frequencies between 660 Hz and 2 kHz. Using the photon correlation system, the sensitivity is measured to within ±0.2 dB for the same frequency range. Initial measurements were performed in a free field environment, using the photon correlation system, to demonstrate the potential for further development of the LDA calibration technique.
5

The thin aerofoil leading edge separation bubble

Crompton, Matthew John January 2001 (has links)
No description available.
6

Laser Doppler Anemometry and Acoustic Measurements of an S822 Airfoil at Low Reynolds Numbers

Orlando, Stephen Michael January 2011 (has links)
Experimental aeroacoustic research was conducted on a wind turbine specific airfoil at low Reynolds numbers. The goal of this thesis was to study trailing edge noise generation from the airfoil and investigate correlations between the noise and the flow field. Before experiments were performed the current wind tunnel had to be modified in order to make it more suitable for aeroacoustic tests. Sound absorbing foam was added to the inside of the tunnel to lower the background noise levels and turbulence reduction screens were added which lowered the turbulence. An S822 airfoil was chosen because it is designed for low Reynolds flows attainable in the wind tunnel which are on the order of 104. Smoke wire flow visualization was used to gain insight into the airfoil wake development and oil film flow visualization was used to qualitatively assess the boundary layer development. Laser Doppler anemometry (LDA) was used to measure two components of velocity at high data rates in the airfoil wake. Wake profiles were measured in addition to single point measurements to determine the velocity spectrum. A microphone was mounted inside the test section in order to measure the trailing edge noise. Initial plans included measuring the trailing edge noise with a microphone array capable of quantifying and locating noise sources. Although an array was built and beamforming code was written it was only used in preliminary monopole source tests. Oil film results showed the behaviour of the boundary layer to be consistent with previous low Reynolds number experiments. LDA results revealed sharp peaks in the velocity spectra at 1100 Hz from U0 = 15–24 m/s, and 3100 and 3800 Hz, from U0 = 25–35 m/s, which were inconsistent with vortex shedding results of previous researchers. Also present were a series of broad peaks in the spectra that increase from 1200–1700 Hz in the U0 = 25–35 m/s range. The shedding frequency from the smoke wire flow visualization was calculated to be 1250 Hz at U0 = 26 m/s. These sharp peaks were also present in the acoustic spectrum. It was reasoned that these peaks are due to wind tunnel resonance which is a common occurrence in hard wall wind tunnels. In particular the tone at 1100 Hz is due to a standing wave with a wavelength equal to half the tunnel width. The shedding frequency from the smoke wire flow visualization was calculated to be 1100 Hz at U0 = 20 m/s. These tones exhibited a “ladder-like” relationship with freestream velocity, another aspect indicative of wind tunnel resonance. It was reasoned that the wind tunnel resonance was forcing the shedding frequency of the airfoil in the U0 = 15–24 m/s range, and in the U0 = 25–35 m/s range, the shedding frequency corresponded to the broad peaks in the LDA spectra.
7

Laser Doppler Anemometry and Acoustic Measurements of an S822 Airfoil at Low Reynolds Numbers

Orlando, Stephen Michael January 2011 (has links)
Experimental aeroacoustic research was conducted on a wind turbine specific airfoil at low Reynolds numbers. The goal of this thesis was to study trailing edge noise generation from the airfoil and investigate correlations between the noise and the flow field. Before experiments were performed the current wind tunnel had to be modified in order to make it more suitable for aeroacoustic tests. Sound absorbing foam was added to the inside of the tunnel to lower the background noise levels and turbulence reduction screens were added which lowered the turbulence. An S822 airfoil was chosen because it is designed for low Reynolds flows attainable in the wind tunnel which are on the order of 104. Smoke wire flow visualization was used to gain insight into the airfoil wake development and oil film flow visualization was used to qualitatively assess the boundary layer development. Laser Doppler anemometry (LDA) was used to measure two components of velocity at high data rates in the airfoil wake. Wake profiles were measured in addition to single point measurements to determine the velocity spectrum. A microphone was mounted inside the test section in order to measure the trailing edge noise. Initial plans included measuring the trailing edge noise with a microphone array capable of quantifying and locating noise sources. Although an array was built and beamforming code was written it was only used in preliminary monopole source tests. Oil film results showed the behaviour of the boundary layer to be consistent with previous low Reynolds number experiments. LDA results revealed sharp peaks in the velocity spectra at 1100 Hz from U0 = 15–24 m/s, and 3100 and 3800 Hz, from U0 = 25–35 m/s, which were inconsistent with vortex shedding results of previous researchers. Also present were a series of broad peaks in the spectra that increase from 1200–1700 Hz in the U0 = 25–35 m/s range. The shedding frequency from the smoke wire flow visualization was calculated to be 1250 Hz at U0 = 26 m/s. These sharp peaks were also present in the acoustic spectrum. It was reasoned that these peaks are due to wind tunnel resonance which is a common occurrence in hard wall wind tunnels. In particular the tone at 1100 Hz is due to a standing wave with a wavelength equal to half the tunnel width. The shedding frequency from the smoke wire flow visualization was calculated to be 1100 Hz at U0 = 20 m/s. These tones exhibited a “ladder-like” relationship with freestream velocity, another aspect indicative of wind tunnel resonance. It was reasoned that the wind tunnel resonance was forcing the shedding frequency of the airfoil in the U0 = 15–24 m/s range, and in the U0 = 25–35 m/s range, the shedding frequency corresponded to the broad peaks in the LDA spectra.
8

An Experimental Study of Longitudinally Embedded Vortices in a Turbulent Boundary Layer via the Non-Invasive Comprehensive LDV Technique

Derlaga, Joseph Michael 05 June 2012 (has links)
This report documents the measurements of turbulence quantities resulting from vortices embedded in a zero pressure gradient turbulent boundary layer. Turbulent boundary layers are found in most flow regimes over large scale vehicles and have been studied for many years. Various systems to control separation of boundary layers have been proposed, but vortex generators have proven to be an economical choice as they are often used to fix deficiencies in a flow field after large scale production of a vehicle has commenced. In order to better understand the interaction between vortex generators and the boundary layer in which they are embedded, an experiment has been performed using through non-invasive Comprehensive Laser Doppler Velocimeter. The results show that normalization on edge velocity is appropriate for comparison with previous work. The 1/S parameter and vq^2 parameter were found to be most appropriate to correlate the Reynolds stresses and triple products, respectively. The higher inflow edge velocity and greater momentum thickness, creating a lower vortex generator to boundary layer height ratio, result in a more diffuse vortex as compared to previous work conducted in the same wind tunnel, with the same geometry, but with different inflow conditions. / Master of Science
9

Traitements avancés pour l’augmentation de la disponibilité et de l’intégrité de la mesure de vitesse 3D par LiDAR, dans le domaine aéronautique. / Advanced process to increase availability and integrity of 3D air speed measurement system by LiDAR, in the aviation industry

Baral-Baron, Grégory 16 July 2014 (has links)
Afin de satisfaire les exigences de sécurité requises dans l’aviation civile, la stratégie adoptée consiste à multiplier les chaînes de mesure pour une même information. Il est aujourd’hui recommandé d’introduire une chaîne de mesure dissemblable (reposant sur un principe physique différent) afin d’augmenter le niveau de sécurité. Dans cette optique, Thales mène des travaux sur le développement d’un anémomètre laser Doppler embarqué sur aéronef. Ce capteur, composé de quatre axes LiDAR (Light Detection And Ranging) répartis autour de l’avion, permet d’estimer la vitesse air par l’analyse de la réflexion de l’onde laser émise sur les particules présentes dans l’air.L’objectif de ces travaux est de concevoir une chaîne de traitement du signal LiDAR adaptée à un capteur sur avion. Cette chaîne, basée sur une représentation temps-fréquence, inclut des étapes de détection du signal utile optimisée pour les conditions de faible ensemencement en particules, de sélection des aérosols utiles dans un nuage et d’estimation robuste afin de contrôler la qualité de la mesure. Cette chaîne de traitement, évaluée lors d’une campagne d’essais réalisée à l’observatoire du Pic du Midi, apporte un gain de performances élevé dans les situations critiques. L’architecture du système a été le second axe d’étude. Une méthode d’estimation du vecteur vitesse à partir des estimations effectuées sur chaque axe LiDAR et d’un modèle aérodynamique de l’avion permet de compenser les perturbations observées à proximité de ce dernier. Puis, une procédure d’optimisation de l’architecture est proposée afin d’améliorer les performances du capteur. Les performances de la chaîne de traitement présentée devront être évaluées en conditions réelles, lors d’essais en vol, afin de sonder une grande variété de conditions atmosphériques et d’évaluer le gain apporté et les faiblesses éventuelles du traitement proposé en fonction de ces conditions. / The method use to respect security requirements in civil aviation consists in multiplying measuring chains for the same information. Now, it is recommended to add a dissimilar measuring chain, based on a different physical principle, in order to improve security level. Thus, Thales works on the development of a laser Doppler anemometer embedded on aircraft. This sensor is composed by four LiDAR (Light Detection And Ranging) axis distributed around the aircraft and air speed is estimated by the analysis of the reflection of the emitted laser wave on particles.This thesis objective is to design a LiDAR signal processing chain adapted to an aircraft sensor. The process is based on a time-frequency representation and it includes methods for signal detection in low concentrated air mass, useful particles selection in clouds and robust estimation to control measure reliability. The process has been evaluated during a test campaign realized at the Pic du Midi observatory. Its performances are greatly improved, especially in critical situations.The system architecture has also been studied. An estimation method designed from estimations performed on different LiDAR axis and an aerodynamic model of an aircraft is proposed in order to compensate for air mass perturbations close to the aircraft. Then, an optimization process is presented to improve sensor performances.The signal processing chain will have to be evaluated by flight tests, to explore a large atmospheric conditions variety and to quantify its strengths and weaknesses depending on conditions.
10

Numerical investigation on the in-cylinder flow with SI and CAI valve timings

Beauquel, Julien A. January 2016 (has links)
The principle of controlled auto-ignition (CAI) is to mix fuel and air homogeneously before compressing the mixture to the point of auto-ignition. As ignition occurs simultaneously, CAI engines operate with lean mixtures preventing high cylinder pressures. CAI engines produce small amounts of nitrogen oxides (NOx) due to low combustion temperatures while maintaining high compression ratios and engine efficiencies. Due to simultaneous combustion and lean mixtures, CAI engines are restricted between low and mid load operations. Various strategies have been studied to improve the load limit of CAI engines. The scope of the project is to investigate the consequences of varying valve timing, as a method to control the mixture temperature within the combustion chamber and therefore, controlling the mixture auto-ignition point. This study presents computational fluid dynamics (CFD) modelling results of transient flow, inside a 0.45 litre Lotus single cylinder engine. After a validation process, a chemical kinetics model is combined with the CFD code, in order to study in-cylinder temperatures, the mixture distribution during compression and to predict the auto-ignition timing. The first part of the study focuses on validating the calculated in-cylinder velocities. A mesh sensitivity study is performed as well as a comparison of different turbulence models. A method to reduce computational time of the calculations is presented. The effects of engine speed on charge delay and charge amount inside the cylinder, the development of the in-cylinder flow field and the variation of turbulence parameters during the intake and compression stroke, are studied. The second part of the study focuses on the gasoline mixture and the variation of the valve timing, to retain different ratios of residual gases within the cylinder. After validation of the model, a final set of CFD calculations is performed, to investigate the effects of valve timing on flow and the engine parameters. The results are then compared to a fully homogeneous mixture model to study the benefits of varying valve duration. New key findings and contributions to CAI knowledge were found in this investigation. Reducing the intake and exhaust valve durations created a mixture temperature stratification and a fuel concentration distribution, prior to auto-ignition. It resulted in extending the heat release rate duration, improving combustion. However, shorter valve timing durations also showed an increase in heat transfer, pumping work and friction power, with a decrease of cylinder indicated efficiency. Valve timing, as a method to control auto-ignition, should only be used when the load limit of CAI engines, is to be improved.

Page generated in 0.092 seconds