121 |
Caracterização das flutuações do sinal doppler do fluxo microvascular / Characterization of laser doppler signal fluctuations in microvascular flowFOLGOSI CORREA, MELISSA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:34:00Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:05Z (GMT). No. of bitstreams: 0 / O sinal de fluxo cutâneo obtido via fluxometria Laser Doppler (SFLD) tem flutuações de baixas frequências que estão relacionadas a mecanismos de controle do fluxo microvascular. Análises espectrais, via transformada de Fourier e transformada de wavelet, têm sido usadas para correlacionar as flutuações de SFLD com os seguintes mecanismos de controle de fluxo: metabólico, metabólico NO-dependente, neurogênico e miogênico, nos respectivos intervalos de frequência 0,005-0,0095 Hz, 0,0095-0,02 Hz, 0,02-0,05 Hz e 0,05-0,15 Hz. A potência do sinal, em cada intervalo de frequência, geralmente é usada como uma medida da atividade do mecanismo de controle microvascular relacionado. Uma vez que os métodos usados de análise são espectrais, as características das flutuações do SFLD, em cada intervalo de frequência, no domínio do tempo são desconhecidas. Como consequência, há ausência de critérios objetivos para medir adequadamente, em cada intervalo de frequência, os parâmetros hemodinâmicos relacionados. O objetivo deste trabalho foi caracterizar e quantificar flutuações temporais, espaciais e espaço-temporais do SFLD em cada faixa de frequência, usando um método no domínio do tempo. Os fluxos basais (320C) e termicamente estimulados à (420C) das regiões volares de antebraços de 20 voluntários saudáveis foram coletados em duas regiões próximas e analisados. As análises dos dados obtidos indicam que janelas temporais pequenas (1 minuto) são aceitáveis para a quantificação do fluxo médio, e que janelas temporais maiores são necessários para quantificar as flutuações de fluxo. A análise espaço-temporal revelou uma forte correlação entre sinais (em todas as bandas, exceto na banda B5) das duas regiões investigadas, durante longos intervalos de tempo, quando as duas regiões estudadas foram termicamente estimuladas, e menor variabilidade intragrupo quando comparada à obtida para os valores médios das flutuações, sugerindo que o intervalo de tempo de correlação é um parâmetro promissor para estudar mecanismos de controle do fluxo microvascular. / Tese (Doutoramento) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
|
122 |
Fluxometria laser doppler da polpa dental apos o clareamento com laser de diodoMORAES, MARIANA P. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:44Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:03:06Z (GMT). No. of bitstreams: 1
13713.pdf: 2929463 bytes, checksum: 0637522e7b2fbcf6cf36b794dceb09a6 (MD5) / Dissertacao (Mestrado Profissionalizante em Lasers em Odontologia) / IPEN/D-MPLO / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
123 |
Can laser Doppler flowmetry evaluate pulpal vitality in traumatizedteeth?Condit, Meghan D. 08 October 2015 (has links)
No description available.
|
124 |
Experimental studies of transonic airfoil trailing edge and wake flowfield properties /Emmer, Deems Shelton January 1984 (has links)
No description available.
|
125 |
Laser doppler anemometer measurements of Reynolds stresses in a fully developed pipe flowDoty, Mark C. 30 March 2010 (has links)
A laser Doppler Anemometer (LDA) is used to make Reynolds stress measurements in a fully developed, turbulent pipe flow. Traverses are made to measure shear stress, normal stresses, and the correlation coefficient. To assess the accuracy of this system, these measurements are compared with results from other published investigations. The differences between the published reports are discussed to emphasize how much turbulence measurements can vary, even in a well-studied flow. Descriptions are included about LDA theory and turbulence measurement techniques. The techniques discussed include the selection of proper sampling rate, the reduction of statistical bias, the choice of amplification, and optimization practices. / Master of Science
|
126 |
Design of a 3-D rapidly scanning laser Doppler velocimeter with low SNR signal processingShinpaugh, Kevin A. January 1989 (has links)
A rapidly scanning directionally sensitive three-velocity-component laser Doppler velocimeter (RSLDV) has been designed. It permits scans through three-dimensional flows to obtain space-time velocity information and almost "instantaneous" velocity profiles vital to understanding such flows.
A flexible optical system allows for easy variation of the fringe spacing as well as the location and size of the measurement volume. Several optical techniques to maintain coincidence between the horizontal, U and W, and vertical, V, probe volumes were investigated. A lens, used like a prism, and two plane mirrors for the out of plane scanning laser beam maintains good coincidence between the probe volumes, while maintaining some flexibility. Moving fringe patterns in the horizontal and vertical planes are produced by two solid state Bragg cells. The Doppler frequency is independent of the position of the receiving optics, and only one photomultiplier tube (PMT) is needed to receive the signals for all three velocity components.
A data acquisition, control and processing system has also been designed for use with the RSLDV. The PMT signal and location of the measurement volume are recorded simultaneously by two transient recorders. The system provides storage for up to 1.25 gigabytes (6 secs.) of LDV data, with permanent storage onto optical disk. A 20 MFLOP array processor provides for fast computation of velocity information.
The Pisarenko harmonic decomposition (PHD) and fast Fourier transform (FFT) algorithms, with various interpolation techniques, were investigated for processing low signal-to-noise ratio signals for use with the RSLDV. The PHD algorithm was found to be unsuitable for use with processing RSLDV signals, however, the algorithm does provide superior frequency estimation for some frequency ratios at SNR levels above 30 dB, which are typical quality signals required for frequency counters. The FFT with zero-padding and log parabolic fit provides frequency estimates with RMS error below 1 % for signals with SNR above -5 dB. To obtain frequency estimates for signals with SNR below -5 dB, the FFT with zero-padding and parabolic lit must be used, signals with SNR down to -18 dB can be processed with this technique. / Master of Science / incomplete_metadata
|
127 |
Total velocity vector measurements in an axial-flow compressor using a 3-component Laser Doppler AnenometerChesnakas, Christopher J. 28 July 2010 (has links)
A three-color, three-component Laser Doppler Anemometer (LOA) capable of making simultaneous measurements of three components of velocity is described, and the use of this LOA to measure three non-orthogonal velocity components in the rotor blade passage of a single-stage axial-flow compressor is reported. Measurements were made at four radial locations from 50% span out to the blade tip, and at seven different axial locations from -0.55 axial chord 1.40 axial chord. Measurements were made at only one throttle setting.
The measured velocities are used to determine the flow in the orthogonal axial - tangential - radial, x - t - r, coordinate system of the compressor. Although the mean velocities and entire Reynolds stress tensor are obtained with this system, only the mean velocities are reported. Results are presented in the form of a series of vector plots showing: 1.) the primary flow as projected on the x - t plane and 2.) the secondary flow in the t - r plane. The LOA measurements are shown to agree with pitot probe measurements in the stationary frame and basic secondary flow theory.
A detailed error analysis is presented, taking into account both measurement uncertainties and statistical biasing. An analysis is also made of particle lag in the rotating flow of the compressor blade passage.
A discussion of the difficulties encountered in making three dimensional velocity measurements in turbomachinery blade passages is presented. Suggestions are made for improving the present system for this task. / Master of Science
|
128 |
The diode array velocimeterSmith, Edward J. 12 September 2009 (has links)
A novel, point measurement, proof-of-concept laser velocimeter has been developed and tested. The diode array velocimeter (DAV) uses a single laser beam for its probe. The DAV measures velocity within a seeded, transparent medium by timing the passage of a seed particle’s image across an array of PIN photodiodes. This prototype device can measure one component of mean velocity as well as one component of time-averaged turbulence intensity. The concept for the DAV is rather simple. It also has an advantage over existing laser velocimeters in that it is relatively inexpensive.
Measurements made with the prototype DAV are compared to those made by a single hot-wire anemometer in a turbulent wall bounded flow with a freestream velocity of 10 m/s. The prototype DAV was found to be accurate to within 10% of U<sub>e</sub> in mean velocity, and within 1.5% of U<sub>e</sub> in turbulence intensity. The prototype DAV can measure mean velocities as great as 60 m/s. It has the potential for making measurements in highly turbulent reversing flows. / Master of Science
|
129 |
A precision laser scanning system for experimental modal analysis: its test and calibrationLi, Xinzuo William 22 August 2009 (has links)
The Laser Doppler Velocimetry technique has been widely used for dynamic measurements and experimental modal analysis. A laser scanning system that provides position accuracy, speed, and flexibility plays a key role in this technique. This thesis gives an overview of various laser scanning techniques and the requirements of a laser scanning system for the LDV and modal testing. The G3B/DE2488, a most-advanced galvanometer-based laser scanning system manufactured by the General Scanning Inc., is one of the most suitable laser scanning systems for the LDV and modal testing. The focus of this work was to test and calibrate such a scanning system to meet the requirements for modal testing. A new method to determine laser scanning angles was introduced. Based on this test method, a laser scanning system test rig was designed and constructed. To determine a laser bealTI scanning angle, the laser and scanner together were translated in a direction perpendicular to the target plane by using a micrometerdriven translation stage. The translation of the scanned laser spot at the target plane due to the translation of the laser-scanner unit was traced by a photodetector and another set of micrometer-driven translation stages that moved in the target plane. The laser beam scanning angle was calculated from the traveled distances of the laser-scanner unit and of the laser spot at the target plane. The test setup was used to determine the overall performance of the G3B/DE2488 which included the scanning time and accuracy. The errors that affected the scanning accuracy were analyzed. Due to the relatively low precision and quality of the cost-constrained equipment used in the test setup, the accuracy of determining a scanning angle was not very high (around 50 µrad). However, if some high-accuracy and high-resolution equipment such as a beam profiler and a set of motor-driven stages are used, this test method has the potential to determine a laser beam scanning angle with an accuracy in the order of microradians. / Master of Science
|
130 |
Three-dimensional velocity extraction using laser Doppler vibrometryAbel, Jeffry J. 04 December 2009 (has links)
In the analysis of plates and beams, in-plane velocities have been assumed to be small and negligible. This was nearly an unavoidable assumption due to the fact that the in-plane velocity was near impossible to determine accurately with conventional techniques. This assumption needs to be checked experimentally. In addition, general engineering structures, such as machines, TV towers, buildings, etc., have major in-plane motions that are actually out-of-plane motions as viewed from another vantage point. These also need to be measured. Now with the use of a Laser Doppler Vibrometer the development of a method to measure three-dimensional velocities has provided the ability to measure in-plane velocities accurately. This thesis outlines the methods used for such three-dimensional extraction and gives an example of its use.
Not only is the final three-dimensional method described, but the whole process of developing the method is outlined. This will hopefully provide insight into the difficulties associated with this method as well as prevent other researchers from following similar fruitless approaches. / Master of Science
|
Page generated in 0.0903 seconds