Spelling suggestions: "subject:"sciurus boreal""
1 |
Hearing and Hunting in Red Bats (Lasiurus Borealis, Vespertilionidae): Audiogram and Ear PropertiesObrist, Martin K., Wenstrup, Jeffrey J. 01 January 1998 (has links)
We examined aspects of hearing in the red bat (Lasiurus borealis) related to its use of biosonar. Evoked potential audiograms, obtained from volume-conducted auditory brainstem responses, were obtained in two bats, and the sound pressure transformation of the pinna was measured in three specimens. Field-recorded echolocation signals were analysed for comparison. The fundamental sonar search calls sweep from 45 to 30 kHz (peak energy at 35 kHz), approach-phase calls sweep from 65 to 35 kHz (peak 40 kHz) and terminal calls sweep from 70 to 30 kHz (peak 45 kHz). The most sensitive region of the audiogram extended from 10 kHz to 45-55 kHz, with maximum sensitivity as low as 20 dB SPL occurring between 25 and 30 kHz. A relative threshold minimum occurred between 40 and 50 kHz. With increasing frequency, the acoustic axis of the pinna moves upwards and medially. The sound pressure transformation was noteworthy near 40-45 kHz; the acoustic axis was closest to the midline, the -3 dB acceptance angles showed local minima, and the pinna gain and interaural intensity difference were maximal. These results are related to the known echolocation and foraging behavior of this species and match the spectral components of approach- and final-phase calls. We conclude that coevolution with hearing prey has put a higher selective pressure on optimizing localization and tracking of prey than on improving detection performance.
|
2 |
Summer Day-Roost Selection and Thermoregulation of Eastern Red Bats (Lasiurus borealis) in Southeast OhioMonarchino, Maria N. 23 September 2019 (has links)
No description available.
|
3 |
Acoustic sampling considerations for bats in the post-white-nose syndrome landscapeBarr, Elaine Lewis 27 January 2020 (has links)
Bat populations across North America are either facing new threats from white-nose syndrome (WNS) and wind energy development or have already experienced precipitous declines. Accordingly, researchers and managers need to know how to best monitor bats to document population and distribution changes, as well as where to look for persisting populations. Landscape-scale WNS impacts to summer bat populations are not well understood, and although acoustic monitoring is commonly used to monitor these populations, there is limited information about differences among acoustic detectors and the implications to managers thereof. My objectives were to model the relationship between WNS impact, influence of available hibernacula, and environmental factors for summer nightly presence of three WNS-affected bats and to compare how multiple models of acoustic detectors perform in terms of detection probability and nightly recorded bat activity. I collected acoustic data from 10 study areas across Virginia, West Virginia, Ohio and Kentucky to describe changes in nightly presence of WNS-affected bat species during summer 2017. During the same period of time, I compared five types of acoustic detectors at Fort Knox, Kentucky. My results show the potential efficacy of using a WNS impact-year metric to predict summer bat presence, and highlight which environmental variables are relevant for large-scale acoustic monitoring. Additionally, my findings suggest that each of the detector types tested would suffice for most research and monitoring activities, but standardization of detector type within the scope of a project or study should be encouraged. / Master of Science / Bat populations across North America are either facing new threats from white-nose syndrome (WNS) and wind energy development or have already experienced devastating declines. Accordingly, wildlife biologists need to know how to best monitor bats to document population and distribution changes, as well as where to look for remaining populations. Landscape-scale WNS impacts to summer bat populations are not well understood, and although acoustic technology is commonly used to monitor these populations, there is limited information about differences among acoustic detectors and the implications to managers thereof. My objectives were to model the relationship between WNS impact, influence of available bat hibernation caves, and environmental factors for summer nightly presence of three WNS-affected bats and to compare how multiple models of acoustic detectors perform in terms of detection probability and nightly recorded bat activity. I collected acoustic data from 10 study areas across Virginia, West Virginia, Ohio and Kentucky to describe changes in nightly presence of WNS-affected bat species during summer 2017. During the same period of time, I compared five types of acoustic detectors at Fort Knox, Kentucky. My results show potential viability of a WNS impact-year metric to predict summer bat presence, and highlight which environmental variables are relevant for large-scale acoustic monitoring. Additionally, my findings suggest that each of the detector types tested would suit most research and monitoring activities, but standardization of detector type within the scope of a project or study should be encouraged.
|
4 |
Bat Habitat Ecology Using Remote Acoustical Detectors at the Army National Guard Maneuver Training Center - Fort Pickett, Blackstone, VirginiaSt Germain, Michael J. 12 June 2012 (has links)
Bats occupy diverse and unique niches and are regarded as important components in maintaining ecosystem health. They are major consumers of nocturnal insects, serve as pollinators, seed disperser, and provide important economic benefits as consumers of agricultural and forest pest insects. Bats have been proposed as good indicators of the integrity of natural communities because they integrate a number of resource attributes and may show population declines quickly if a resource attribute is missing. Establishing community- and population-level data, and understanding species interactions is especially important in changing landscapes and for species whose populations levels are threatened by outside factors of anthropomorphic disturbance from hibernacular visitation to energy production and fungal pathogens. For these reasons I have set out to establish habitat use patterns, detection probabilities, spatial and temporal occupancy, and investigate species interactions. This thesis is broken down into three distinct chapters each intended to be a stand-alone document. The first establishes the basic ecology from natural history accounts, provides an overview of the various sampling strategies, and gives a comprehensive description of the study area. The seconds sets out to identify the factors influencing detection probabilities and occupancy of six sympatric bats species and provide insight into habitat use patterns. The third examines spatial and temporal activity patterns and investigates species interactions. This study can provide understanding into the secretive and poorly understood patterns of free flying bats across the landscape. It can also deliver useful information to land managers regarding potential changes in landscape practices for the conservation of bat species. / Master of Science
|
Page generated in 0.0432 seconds