• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 33
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Variability of the R Magnitude in Dynamical Models of AGB Stars

Brogan, Roisin January 2019 (has links)
This report will first give a brief background on asymptotic giant branch (AGB) stars and the characteristics that make them interesting to study. Some methods and tools used in the field are then introduced, before the photometric variability of these stars is investigated. This is achieved by using data from dynamical models of AGB stars with differing chemical abundances. The R, J and K bands of the UBVRI system are specifcally investigated to explore whether these are good candidates for AGB photometric and spectroscopic research. Lastly, the molecular features at these wavelengths are investigated to understand the impact that they have on the photometric variability during the pulsation cycle and which molecules are most prominent in this.
12

EI Eridani and the art of doppler imaging : a long-term study / EI Eridani and the art of doppler imaging : a long-term study

Washüttl, Albert January 2004 (has links)
Das Verständnis magnetisch verursachter Aktivität auf Sternen sowie der zugrundeliegenden Dynamoprozesse ist von fundamentaler Bedeutung für das Verständnis von Entstehung und Entwicklung von Sternen sowie des Lebens im Universum. Sichtbare Erscheinungen dieser stellaren Aktivität sind u.a. Sternflecken, welche als Indikatoren des zugrundeliegenden Magnetfeldes dienen. Solche Flecken können auf anderen Sternen als der Sonne nicht direkt beobachtet werden, zumal mit den heutigen technischen Mitteln eine Auflösung der Oberfläche selbst der benachbarten Sterne unmöglich ist. Eine indirekte Rekonstruktionsmethode namens 'Doppler Imaging' erlaubt es jedoch, auf die Temperaturverteilung auf der Sternoberfläche zu schließen. Für diese Arbeit wurden elf Jahre kontinuierlicher spektroskopischer Beobachtungen des aktiven Doppelsterns EI Eridani herangezogen, um insgesamt 34 Dopplerkarten zu erstellen. In der Folge wird versucht, eine Grundlage zu schaffen für die Analyse des zweidimensionalen Informationsgehalts dieser Karten. Drei Oberflächenkartenparameter werden vorgeschlagen: gemittelte Temperatur, getrennt für verschiedenen stellare Breitenbänder; relative Fleckenhäufigkeit; und, zum Zwecke der Auswertung der strukturellen Temperaturverteilung, Längen- und Breiten-Ortsfunktion der Sternfleckenhäufung. Die resultierenden Werte zeigen deutlich, daß kein zeitlicher Zusammenhang mit dem photometrischen Aktivitätszyklus besteht. Die Morphologie der Fleckenverteilung bleibt während des kompletten Beobachtungszeitraums im wesentlichen konstant. Im Gegensatz zur Sonne gibt es also, im beobachteten Zeitraum und innerhalb der bestehenden Genauigkeit, keinen Fleckenzyklus auf dem aktiven Stern EI Eri. Darüberhinaus wurde eine ausführliche Studie der stellaren Parameter von EI Eri und eine vorläufige Abschätzung der differentiellen Rotation auf EI Eri durchgeführt, die eine anti-solare Ausrichtung aufzuweisen scheint, d.h. der Pol rotiert schneller als der Äquator. / Understanding stars, their magnetic activity phenomena and the underlying dynamo action is the foundation for understanding 'life, the universe and everything' - as stellar magnetic fields play a fundamental role for star and planet formation and for the terrestrial atmosphere and climate. Starspots are the fingerprints of magnetic field lines and thereby the most important sign of activity in a star's photosphere. However, they cannot be observed directly, as it is not (yet) possible to spacially resolve the surfaces of even the nearest neighbouring stars. Therefore, an indirect approach called 'Doppler imaging' is applied, which allows to reconstruct the surface spot distribution on rapidly rotating, active stars. In this work, data from 11 years of continuous spectroscopic observations of the active binary star EI Eridani are reduced and analysed. 34 Doppler maps are obtained and the problem of how to parameterise the information content of Doppler maps is discussed. Three approaches for parameter extraction are introduced and applied to all maps: average temperature, separated for several latitude bands; fractional spottedness; and, for the analysis of structural temperature distribution, longitudinal and latitudinal spot-occurrence functions. The resulting values do not show a distinct correlation with the proposed activity cycle as seen from photometric long-term observations, thereby suggesting that the photometric activity cycle is not accompanied by a spot cycle as seen on the Sun. The general morphology of the spot pattern on EI Eri remains persistent for the whole period of 11 years. In addition, a detailed parameter study is performed. Improved orbital parameters suggest that EI Eri might be complemented by a third star in a wide orbit of about 19 years. Preliminary differential rotation measurements are carried out, indicating an anti-solar orientation.
13

Solar Type Stars as Calibrators : A Photometric and Spectroscopic Study on the Atmospheric Properties of Late-type Stars

Önehag, Anna January 2011 (has links)
Detailed knowledge of solar-type stars is essential in the understanding of the evolutionary past, presence and future of the Sun as well as the formation of its planetary system. Moreover, solar-type stars are of key significance for the study of the evolution of the Galaxy. The ages of solar-type stars map the full galactic evolution. Their surface layers are well mixed and just little affected by the interior nuclear processes. They may therefore be used as samples of the gas from which the stars were once formed. Models of stellar atmospheres are used to derive fundamental stellar quantities such as chemical composition, effective temperature, surface gravity, age and rotation. It is therefore also important to investigate the progress and shortcomings of the atmospheric models and the reliability of calibrations based upon these. In this thesis we explore the potential of synthetic uvbyHβ colours for deriving atmospheric parameters. The theoretical colours are derived using high-resolution synthetic spectra based on 1D atmosphere models of late-type stars. Furthermore, possible applications of the established synthetic colours on globular stellar clusters are tested. Observations of solar-type stars have demonstrated the existence of stars very similar to the Sun, so-called solar twins. A detailed chemical analysis of these stars, however, shows that most solar-twins are systematically richer, as compared with the Sun, in refractory elements such as Fe, Ni and Al, relative to volatile elements like C, N and O. This chemical abundance pattern has been suggested to be related to the formation of planets or the birth environment of the respective star. In this thesis we present a high-accuracy study on a solar-twin star in the old open cluster M67. We find that the star is very similar to the Sun when comparing their atmospheric parameters, effective temperature, surface gravity and metallicity. Remarkably enough, unlike most solar twins observed in the solar vicinity, the cluster twin shows the same refractory to volatile pattern as the Sun.The reason for this similarity is still unknown but further observations of the cluster will help to clarify the matter. M dwarfs constitute a large fraction of the detectable baryonic matter. In spite of this, detailed knowledge on the numerous neighbouring low-mass stars is still not available. The presence of strong molecular features in the spectra, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for detailed spectroscopic abundance analysis. In this thesis we present a high resolution spectroscopic study of early-type M dwarfs in the infrared. The lack of prominent molecular bands in parts of the infrared J-band (1100--1400 nm) allows a precise continuum placement. Furthermore, we verify the adequacy of using the model atmospheres for abundance determination by observing a set of binary systems with a solar-type primary and an M dwarf companion. We present a reliable zero-point for the metallicity scale of early-type M dwarfs and verify the reliability of spectroscopic abundance analyses in the infrared.
14

Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

Marks, M., Martín, E. L., Béjar, V. J. S., Lodieu, N., Kroupa, P., Manjavacas, E., Thies, I., Rebolo López, R., Velasco, S. 31 August 2017 (has links)
Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims. For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above approximate to 0.2 M-circle dot, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods. We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results. The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions. The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction -primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.
15

A Statistical Survey of Peculiar L and T Dwarfs in SDSS, 2MASS, and WISE

Kellogg, Kendra, Metchev, Stanimir, Miles-Páez, Paulo A., Tannock, Megan E. 29 August 2017 (has links)
We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young (less than or similar to 200 Myr; 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic J-K-s color of 2.58 +/- 0.11 mag, one of the new objects, the L6 dwarf 2MASS J03530419 +0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than similar to 200 Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to similar to 400 Myr. In this case a red J - K-s color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.
16

The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

Fossati, L., Marcelja, S. E., Staab, D., Cubillos, P. E., France, K., Haswell, C. A., Ingrassia, S., Jenkins, J. S., Koskinen, T., Lanza, A. F., Redfield, S., Youngblood, A., Pelzmann, G. 11 May 2017 (has links)
Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R'(HK) indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s(-1) and for ISM Ca II column densities log N-CaII greater than or similar to 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log N-CaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'(HK) value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the latest results on stellar activity versus planet surface gravity correlation. We finally describe methods with which it would be possible to account for ISM absorption in activity measurements and provide a code to roughly estimate the magnitude of the bias. Correcting for the ISM absorption bias may allow one to identify the origin of the anomaly in the activity measured for some planet-hosting stars.
17

Silicon monoxide masers and the magnetic field of R Cassiopeiae

Al Muntafki, Khudhair Abbas assaf January 2012 (has links)
Silicon monoxide maser emission has been detected in many evolved stars in circumstellar envelopes in different vibrationally-excited rotational transitions. It is considered a good tracer to study the dynamics in a region close to the photosphere of the star. We present multi-epoch, total intensity, high-resolution images of 43 GHz, v=1, J=1-0 SiO maser emission toward the Mira variable R Cas. In total we have 23 epochs of data for R Cas at approximate monthly intervals over an optical pulsation phase range of φ = 0.158 to φ = 1.782. These maps show a ring-like distribution of the maser features in a shell, which is assumed to be centred on the star at average radius of 1.6 → 2.3 times the radius of star, R⋆. It is clear from these images that the maser emission is significantly extended around the star. At some epochs a faint outer arc can be seen at about 4 R⋆. The intensity of the emission waxes and wanes during the stellar phase. Some maser features are seen infalling as well as outflowing. We have made initial comparisons of our data with models by Gray et al. (2009). We have investigated the polarization morphology by mapping the linear and circular polarization of SiO masers in the v=1, J=1-0 transition. We found that some of the polarization vectors are either tangential or radial, which indicate a bimodal structure of the linear polarization morphology. Other angles can be seen as well. This is consistent with a radial, stellar-centred magnetic field in the SiO maser shell. We found in some isolated features the fractional linear polarization exceeds 100%. In other features, the polarization angle abruptly flips by 90◦. We found that our data are in the regime that the Zeeman splitting rate g is much greater than the stimulated emission rate R which in turn is greater than the decay rate , which indicates that the solution of Goldreich et al. (1973) can be applied.
18

The mass-radius relationship of M dwarf stars from Kepler eclipsing binaries

Han, Eunkyu 01 February 2021 (has links)
M dwarf stars make up over 70% of stars by number in the Milky Way Galaxy and are known to host at least two exoplanets per star on average. Using mutually eclipsing double-lined spectroscopic binary stars (SB2 EBs), astronomers can empirically measure stellar properties of M dwarf stars including mass and radius. However, empirical measurements systematically differ from the predictions of stellar evolutionary models and show large scatter. Some M dwarf stars are outliers, with radii that are a factor of 2-to-3 larger than model predictions, assuming they were measured accurately. In this dissertation, I investigated whether the outliers, systematic offset, and the scatter seen in the mass-radius diagram are physical, using SB2 EBs with photometry from NASA's Kepler Mission and high-resolution near-infrared ground-based spectroscopy. Empirical measurements using space-based photometry and high-resolution near-infrared ground-based spectroscopy, together with Bayesian model-fitting techniques, provide significant advancements over previous measurements. For this dissertation work, a sample of Kepler EBs were carefully chosen to be detached and non-interacting. I conducted a radial velocity survey of the sample using Immersion GRating INfrared Spectrometer (IGRINS) with the Discovery Channel Telescope (DCT) and iSHELL with NASA's Infrared Telescope Facility (IRTF). Combined with high-precision Kepler data, I determined the masses and radii of the component stars in the sample. I also determined a new mass-radius relationship of M dwarf stars using the sample of Kepler EB systems. My investigation showed that the outliers in the mass-radius diagram of M dwarf stars are not physical and they are due to the quality of data and from analysis using different pipelines. I also showed that the offset and scatter in the mass-radius diagram are persistent, which are not from the measurement uncertainties. This suggests the need for an extra degree of freedom to accurately capture the discrepancies between the empirical measurements and model predictions. Lastly, I showed that reduced convective heat flow due to enhanced magnetic fields from rapid stellar rotation can account for the offset and scatter in the measurements.
19

Spherically-Symmetric Model Stellar Atmospheres and Limb Darkening: I. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for Red Giant Stars

Neilson, H. R., Lester, J. B. 19 June 2013 (has links)
Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRot and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities log g < 3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
20

Vanadium Oxide in the Spectra of Mira Variables

Castelaz, Michael W., Luttermoser, Donald G., Piontek, Robert A. 20 July 2000 (has links)
As a preliminary step in deducing Teff and log (g) of Mira variables as a function of phase, a comparison is made between spectra synthesized from LTE stellar atmosphere models and observed spectra. The observed spectra show obvious vanadium oxide (VO) absorption bands. However, the molecular line list used to produce the synthetic spectra does not include the bound-bound VO opacities. The wavenumbers, line oscillator strengths, and lowest energy levels are needed to calculate these opacities. The equations, constants, and experimentally determined factors required to calculate the line oscillator strengths and lowest energy levels from experimentally determined wavenumbers are presented. The effect of including the wavenumbers, line oscillator strengths, and lowest energy levels of the VO BX (0, 0) band are calculated and show the expected absorption features observed in the spectra of Mira variables. In the VO B-X (0, 0) band the line oscillator strengths range from about 0.05 to 3.

Page generated in 0.0604 seconds