• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 3
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 13
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterizing Surface Enthalpy Flux and Ocean Patterns in Rapidly Intensifying Tropical Cyclones

Bray, Mason Andrew Clark 11 August 2017 (has links)
An analysis to determine physical and spatial patterns of the surface latent heat flux (LHF) and near surface (5m) salinity (NSS) beneath tropical cyclones (TCs) in the North Atlantic and eastern North Pacific basins during the first 24 hours of rapid intensification (RI) was conducted using empirical orthogonal function (EOF) analysis. To determine if these patterns were unique to RI, TC RI cases were compared to three non-RI intensification thresholds, 10 kt, 15 kt and 20 kt, for both LHF and NSS. Though similarities exist between non-RI and RI cases physical and spatial patterns unique to the RI cases did exist. Sea surface temperatures associated with statistically identified TC groups were assessed for their potential influence on RI. While inconclusive in the eastern North Pacific, NSS in the Atlantic may play a role for RI TCs in areas affected by river discharge from South America.
2

Padrão espaço temporal dos componentes do balanço de energia em clima subtropical úmido

Schirmbeck, Juliano January 2017 (has links)
Resumo: Considerando a importância da compreensão da dinâmica espaço temporal dos componentes do balanço de energia (BE) em escala regional para o gerenciamento de recursos hídrico e o manejo agrícola, o objetivo principal desta tese foi construir e analisar uma série temporal dos componentes do BE adequada às condições de clima subtropical úmido do Estado do Rio Grande do Sul. Para tanto, inicialmente foi avaliada a adequação de modelos de estimativa de BE para o Estado. Nesta etapa foram utilizados produtos MODIS e dados de referência medidos em uma torre micrometeorológica instalada em Cruz Alta – RS, usando valores instantâneos para um período de estudo de 2009 a 2011. Na sequência foi avaliada a adequação dos modelos em representar a variabilidade espacial dos componentes do BE. Nesta etapa foram usados produtos MODIS, dados de reanálise ERA Interim, dados de referência da torre micrometeorológica e dados de estações meteorológicas do INMET, para o mesmo período de estudo. Na última etapa do trabalho foi construída a série temporal dos componentes do BE usando o modelo METRIC, a qual abrangeu um período de 14 anos, de 2002 a 2016. Os resultados demonstraram que os três modelos analisados apresentam coerência com as medidas de referência, sendo as maiores limitações apresentadas pelo modelo SEBAL, as quais se atribui principalmente às condições ecoclimáticas do Estado e a baixa resolução espacial das imagens. Na análise da variabilidade espacial, o modelo METRIC apresentou maior consistência nos resultados e proporcionou maior número de dias com resultados válidos, sendo assim apontado como o mais apto para realização do restante do estudo. A série temporal construída possibilitou a compreensão dos padrões de distribuição espaço temporal dos componentes do BE no estado do Rio Grande do Sul. Há uma marcada sazonalidade nos componentes do BE, com maiores valores no verão e menores no inverno. G (fluxo de calor no solo) é o componente de menor magnitude e sua distribuição espacial e temporal é determinada pela distribuição de Rn (saldo de radiação). Já os componentes LE (fluxo de calor latente) e H (fluxo de calor sensível), são os que mostram magnitude maior e apresentam padrões de distribuição espacial e temporal coerentes com as condições climáticas e com os tipos de uso e cobertura na área de estudo. Observase um padrão inverso, com um gradiente de LE no sentido noroeste para sudeste e para o componente H, no sentido sudeste para noroeste. Sendo estas informações de grande importância para gerenciamento de recursos hídricos em escala regional, para estudos de zoneamento agrícola. / Abstract: Given the importance of understanding the temporal and spatial dynamics of of the energy balance (EB) components in a regional scale for the management of water resources and agricultural, the main objective of this thesis was to construct and analyze a time series of the components of BE appropriate to the subtropical humid climate conditions of the State of Rio Grande do Sul. In order to reach the objective initially, the adequacy of the models for the humid climate conditions was evaluated, in this step we used MODIS data and reference data measured in a micrometeorological tower installed in Cruz Alta - RS. The analyzes performed with instantaneous values and the study period was from 2009 to 2011. The next step evaluate the spatial variability of the BE components, the data used were the MODIS products, ERA Interim reanalysis data, reference data of the micrometeorological tower and INMET meteorological stations, for the same study period. In the last stage the time series of the BE components was constructed from the METRIC model. The period series was 14 years from 2002 to 2016.The results showed that the three models analyzed were consistent with the reference measurements, with the greatest limitations presented by the SEBAL model, which are mainly attributed to the state's eco-climatic conditions and the low spatial resolution of the images In the analysis of the spatial variability, the METRIC model presented greater consistency in the results and provided greater number of days with valid results, this model thus indicated as the most suitable for the rest of the study. The time series constructed allowed us to understand the temporal distribution patterns of BE components in the state of Rio Grande do Sul. There is a marked seasonality in the BE components, with higher values in summer and lower in winter. G is the smallest magnitude component and its spatial and temporal distribution is determined by the Rn distribution. On the other hand, the LE and H components are those that show higher magnitude and present spatial and temporal distribution patterns consistent with the climatic conditions and the types of use and coverage in the study area. An inverse pattern is observed, with a LE gradient from north-west to south-east and for H-component, from southeast to northwest.
3

Padrão espaço temporal dos componentes do balanço de energia em clima subtropical úmido

Schirmbeck, Juliano January 2017 (has links)
Resumo: Considerando a importância da compreensão da dinâmica espaço temporal dos componentes do balanço de energia (BE) em escala regional para o gerenciamento de recursos hídrico e o manejo agrícola, o objetivo principal desta tese foi construir e analisar uma série temporal dos componentes do BE adequada às condições de clima subtropical úmido do Estado do Rio Grande do Sul. Para tanto, inicialmente foi avaliada a adequação de modelos de estimativa de BE para o Estado. Nesta etapa foram utilizados produtos MODIS e dados de referência medidos em uma torre micrometeorológica instalada em Cruz Alta – RS, usando valores instantâneos para um período de estudo de 2009 a 2011. Na sequência foi avaliada a adequação dos modelos em representar a variabilidade espacial dos componentes do BE. Nesta etapa foram usados produtos MODIS, dados de reanálise ERA Interim, dados de referência da torre micrometeorológica e dados de estações meteorológicas do INMET, para o mesmo período de estudo. Na última etapa do trabalho foi construída a série temporal dos componentes do BE usando o modelo METRIC, a qual abrangeu um período de 14 anos, de 2002 a 2016. Os resultados demonstraram que os três modelos analisados apresentam coerência com as medidas de referência, sendo as maiores limitações apresentadas pelo modelo SEBAL, as quais se atribui principalmente às condições ecoclimáticas do Estado e a baixa resolução espacial das imagens. Na análise da variabilidade espacial, o modelo METRIC apresentou maior consistência nos resultados e proporcionou maior número de dias com resultados válidos, sendo assim apontado como o mais apto para realização do restante do estudo. A série temporal construída possibilitou a compreensão dos padrões de distribuição espaço temporal dos componentes do BE no estado do Rio Grande do Sul. Há uma marcada sazonalidade nos componentes do BE, com maiores valores no verão e menores no inverno. G (fluxo de calor no solo) é o componente de menor magnitude e sua distribuição espacial e temporal é determinada pela distribuição de Rn (saldo de radiação). Já os componentes LE (fluxo de calor latente) e H (fluxo de calor sensível), são os que mostram magnitude maior e apresentam padrões de distribuição espacial e temporal coerentes com as condições climáticas e com os tipos de uso e cobertura na área de estudo. Observase um padrão inverso, com um gradiente de LE no sentido noroeste para sudeste e para o componente H, no sentido sudeste para noroeste. Sendo estas informações de grande importância para gerenciamento de recursos hídricos em escala regional, para estudos de zoneamento agrícola. / Abstract: Given the importance of understanding the temporal and spatial dynamics of of the energy balance (EB) components in a regional scale for the management of water resources and agricultural, the main objective of this thesis was to construct and analyze a time series of the components of BE appropriate to the subtropical humid climate conditions of the State of Rio Grande do Sul. In order to reach the objective initially, the adequacy of the models for the humid climate conditions was evaluated, in this step we used MODIS data and reference data measured in a micrometeorological tower installed in Cruz Alta - RS. The analyzes performed with instantaneous values and the study period was from 2009 to 2011. The next step evaluate the spatial variability of the BE components, the data used were the MODIS products, ERA Interim reanalysis data, reference data of the micrometeorological tower and INMET meteorological stations, for the same study period. In the last stage the time series of the BE components was constructed from the METRIC model. The period series was 14 years from 2002 to 2016.The results showed that the three models analyzed were consistent with the reference measurements, with the greatest limitations presented by the SEBAL model, which are mainly attributed to the state's eco-climatic conditions and the low spatial resolution of the images In the analysis of the spatial variability, the METRIC model presented greater consistency in the results and provided greater number of days with valid results, this model thus indicated as the most suitable for the rest of the study. The time series constructed allowed us to understand the temporal distribution patterns of BE components in the state of Rio Grande do Sul. There is a marked seasonality in the BE components, with higher values in summer and lower in winter. G is the smallest magnitude component and its spatial and temporal distribution is determined by the Rn distribution. On the other hand, the LE and H components are those that show higher magnitude and present spatial and temporal distribution patterns consistent with the climatic conditions and the types of use and coverage in the study area. An inverse pattern is observed, with a LE gradient from north-west to south-east and for H-component, from southeast to northwest.
4

Sources of variation in multi-decadal water fluxes inferred from weather station data

Rigden, Angela Jean 01 December 2017 (has links)
Terrestrial evapotranspiration (ET) is a significant component of the energy and water balances at the land surface. However, direct, continuous measurements of ET are spatially limited and only available since the 1990s. Due to this lack of observations, detecting and attributing long-term regional trends in ET remains difficult. This dissertation aims to alleviate the data limitation and detect long-term trends by developing a method to infer ET from data collected at common weather stations, which are spatially and temporally abundant. The methodology used to infer ET from historical meteorological data is based on an emergent relation between the land surface and atmospheric boundary layer. We refer to this methodology as the Evapotranspiration from Relative Humidity at Equilibrium method, or the “ETRHEQ method”. In the first section of this dissertation, we develop the ETRHEQ method for use at common weather stations and demonstrate the utility of the method at twenty eddy covariance sites spanning a wide range of climate and plant functional types. Next, we apply the ETRHEQ method at historical weather stations across the continental U.S. and show that ET estimates obtained via the ETRHEQ method compare well with watershed scale ET, as well as ET estimates from land surface models. From 1961 to 1997, we find negligible or increasing trends in summertime ET over the central U.S. and the west coast and negative trends in the eastern and western U.S. From 1998 to 2014, we find a sharp decline in summertime ET across the entire U.S. We show that this decline is consistent with decreasing transpiration associated with declines in humidity. Lastly, we assess the sensitivity of ET to perturbations in soil moisture and humidity anticipated with climate change. We demonstrate that the response of ET to changing humidity and soil moisture is strongly dependent on the biological and hydrological state of the surface, particularly the degree of water stress and vegetation fraction. In total, this dissertation demonstrates the utility of the ETRHEQ method as a means to estimate ET from weather station data and highlights the critical role of vegetation in modulating ET variability.
5

Padrão espaço temporal dos componentes do balanço de energia em clima subtropical úmido

Schirmbeck, Juliano January 2017 (has links)
Resumo: Considerando a importância da compreensão da dinâmica espaço temporal dos componentes do balanço de energia (BE) em escala regional para o gerenciamento de recursos hídrico e o manejo agrícola, o objetivo principal desta tese foi construir e analisar uma série temporal dos componentes do BE adequada às condições de clima subtropical úmido do Estado do Rio Grande do Sul. Para tanto, inicialmente foi avaliada a adequação de modelos de estimativa de BE para o Estado. Nesta etapa foram utilizados produtos MODIS e dados de referência medidos em uma torre micrometeorológica instalada em Cruz Alta – RS, usando valores instantâneos para um período de estudo de 2009 a 2011. Na sequência foi avaliada a adequação dos modelos em representar a variabilidade espacial dos componentes do BE. Nesta etapa foram usados produtos MODIS, dados de reanálise ERA Interim, dados de referência da torre micrometeorológica e dados de estações meteorológicas do INMET, para o mesmo período de estudo. Na última etapa do trabalho foi construída a série temporal dos componentes do BE usando o modelo METRIC, a qual abrangeu um período de 14 anos, de 2002 a 2016. Os resultados demonstraram que os três modelos analisados apresentam coerência com as medidas de referência, sendo as maiores limitações apresentadas pelo modelo SEBAL, as quais se atribui principalmente às condições ecoclimáticas do Estado e a baixa resolução espacial das imagens. Na análise da variabilidade espacial, o modelo METRIC apresentou maior consistência nos resultados e proporcionou maior número de dias com resultados válidos, sendo assim apontado como o mais apto para realização do restante do estudo. A série temporal construída possibilitou a compreensão dos padrões de distribuição espaço temporal dos componentes do BE no estado do Rio Grande do Sul. Há uma marcada sazonalidade nos componentes do BE, com maiores valores no verão e menores no inverno. G (fluxo de calor no solo) é o componente de menor magnitude e sua distribuição espacial e temporal é determinada pela distribuição de Rn (saldo de radiação). Já os componentes LE (fluxo de calor latente) e H (fluxo de calor sensível), são os que mostram magnitude maior e apresentam padrões de distribuição espacial e temporal coerentes com as condições climáticas e com os tipos de uso e cobertura na área de estudo. Observase um padrão inverso, com um gradiente de LE no sentido noroeste para sudeste e para o componente H, no sentido sudeste para noroeste. Sendo estas informações de grande importância para gerenciamento de recursos hídricos em escala regional, para estudos de zoneamento agrícola. / Abstract: Given the importance of understanding the temporal and spatial dynamics of of the energy balance (EB) components in a regional scale for the management of water resources and agricultural, the main objective of this thesis was to construct and analyze a time series of the components of BE appropriate to the subtropical humid climate conditions of the State of Rio Grande do Sul. In order to reach the objective initially, the adequacy of the models for the humid climate conditions was evaluated, in this step we used MODIS data and reference data measured in a micrometeorological tower installed in Cruz Alta - RS. The analyzes performed with instantaneous values and the study period was from 2009 to 2011. The next step evaluate the spatial variability of the BE components, the data used were the MODIS products, ERA Interim reanalysis data, reference data of the micrometeorological tower and INMET meteorological stations, for the same study period. In the last stage the time series of the BE components was constructed from the METRIC model. The period series was 14 years from 2002 to 2016.The results showed that the three models analyzed were consistent with the reference measurements, with the greatest limitations presented by the SEBAL model, which are mainly attributed to the state's eco-climatic conditions and the low spatial resolution of the images In the analysis of the spatial variability, the METRIC model presented greater consistency in the results and provided greater number of days with valid results, this model thus indicated as the most suitable for the rest of the study. The time series constructed allowed us to understand the temporal distribution patterns of BE components in the state of Rio Grande do Sul. There is a marked seasonality in the BE components, with higher values in summer and lower in winter. G is the smallest magnitude component and its spatial and temporal distribution is determined by the Rn distribution. On the other hand, the LE and H components are those that show higher magnitude and present spatial and temporal distribution patterns consistent with the climatic conditions and the types of use and coverage in the study area. An inverse pattern is observed, with a LE gradient from north-west to south-east and for H-component, from southeast to northwest.
6

CROPS WATER STATUS QUANTIFICATION USING THERMAL AND MULTISPECTRAL SENSING TECHNOLOGIES

Yan Zhu (12238322) 20 April 2022 (has links)
<p>Thermal and multispectral imagery can provide users with insights into the water stress status and evapotranspiration demand of crops. However, traditional platforms, such as satellites, for these thermal and multispectral sensors are limited in their usefulness due to low spatial and temporal resolution. Small unmanned aircraft system (UAS) have the potential to have similar sensors installed and provide canopy temperature and reflectance information at spatial and temporal resolutions more useful for crop management; however, most of the existing research on the calibration or the estimation of water status were established based on the satellite platforms either for the sensors calibration or water status quantification. There is, therefore, a need to develop methods specifically for UAS-mounted sensors. In this research, a pixel-based calibration and an atmospheric correction method based on in-field approximate blackbody sources were developed for an uncooled thermal camera, and the higher accurate vegetative temperature acquired after calibration was used as inputs to an algorithm developed for high-resolution thermal imagery for calculating crop latent heat flux. At last, a thermal index based on the Bowen ratio is proposed to quantify the water deficit stress in a crop field, along with this, a method for plot-level analysis of various vegetation and thermal indices have been demonstrated to illustrate its broad application to genetic selection. The objective was to develop a workflow to use high-resolution thermal and multispectral imagery to derive indices that can quantify crops water status on a plot level which will facilitate the research related to breeding selection.</p> <p>The camera calibration method can effectively reduce the root mean square error (RMSE) and variability of measurements. The pixel-based thermal calibration method presented here was able to reduce the measurement uncertainty across all the pixels in the images, thus improving the accuracy and reducing the between-pixel variability of the measurements. During field calibration, the RMSE values relative to ground reference targets for two flights in 2017 were reduced from 6.36°C to 1.24°C and from 4.56°C to 1.32°C, respectively. The latent heat flux estimation algorithm yields an RMSE of 65.23 W/m<sup>2</sup> compared with the ground reference data acquired from porometer. The Bowen ratio has a high correlation with drought conditions quantified using the soil moisture index, stomatal conductance, and crop water stress index (CWSI), which indicates the potential of this index to be used as a water deficit stress indicator. The thermal and multispectral indices on a plot level displayed will facilitate the breeding selection.</p>
7

Eddy Covariance in a Tallgrass Prairie: energy balance closure, water and carbon budgets, and shrub expansion

Arnold, Kira Brianne January 1900 (has links)
Master of Science / Department of Agronomy / Jay Ham / The exchange of water, carbon, and energy between grasslands and the atmosphere is an important biogeochemical pathway affecting ecosystem productivity and sustainability. The eddy covariance (EC) technique directly measures this mass and energy exchange. However, questions remain regarding the accuracy of EC-derived H[subscript]2O and CO[subscript]2 fluxes in landscapes with irregular topography and variable vegetation. These concerns stem from the "energy balance (EB) closure problem" (i.e., measured energy in does not equal measured energy out). My main objectives were to examine EB closure at two topographical positions within an annually burned tallgrass prairie watershed and to examine the effect of landscape position and woody encroachment on carbon and water exchanges. In tallgrass prairie, 14 km south of Manhattan, KS, USA, EC towers were deployed at three sites in 2007 and 2008. One upland and lowland tower were within an annually burned watershed dominated by C[subscript]4 grasses. Another lowland tower was deployed in a separate quadrennial-burned watershed where significant woody vegetation occupied the tower's sampling area. All towers measured EB components (net radiation, R[subscript]n; soil heat flux, G; sensible heat flux, H; and latent heat flux, [lambda]E). In the annually burned watershed, landscape position had little effect on G, H, and R[subscript]n with differences [less than] 2% between sites. However lowland [lambda]E was 8% higher, owing to larger plant biomass/leaf area and greater soil moisture. Energy balance closure (i.e., [[lambda]E + H] / [R[subscript]n - G]) was 0.87 and 0.90 at the upland and lowland sites, respectively. A nearby large-aperture scintillometer provided good validation of EC-derived H in 2007. Data suggested that underestimates of [lambda]E may have accounted for the closure problem; sample calculations showed that increasing [lambda]E by 17% would have resulted in near prefect closure. Data from this study suggests that EB closure does not strongly correlate with topographical position; however these data raise questions regarding accuracy of the [lambda]E term. Mass exchange analysis shows that the prairie carbon cycle is highly dependent on burning. The lowland and upland annually burned sites saw carbon gains of 281 to 444 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 before burning with the shrub lowland showing the least (e.g. 159 and 172 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1). After the prescribed burn, the upland and lowland sites remained slight carbon sinks (68 to 191 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1), whereas the unburned shrub site was a carbon sink in 2007 (159 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1, because no carbon loss was incurred via burning) and a large carbon source in 2008 when it was burned the following year (336 g C m[superscript]-[superscript]2 yr[superscript]-[superscript]1 loss). Evapotranspiration (ET) was highest at the shrub lowland where greater soil moisture and abundance of deep-rooted C[subscript]3 shrub vegetation allowed greater uptake and loss of water.
8

The Behaviour of the Latent Heat Exchange Coefficient in the Stable Marine Boundary Layer

Lindgren, Kristina January 2008 (has links)
<p>Knowledge of the turbulent fluxes at the sea surface is important for understanding the interaction between atmosphere and ocean. With better knowledge, improvements in the estimation of the heat exchange coefficients can be made and hence models are able to predict the weather and future climate with higher accuracy.</p><p>The exchange coefficients of latent and sensible heat during stable stratification vary in the literature. Therefore it is necessary to investigate the processes influencing the air-sea exchange of water vapour and heat in order to estimate these values. With measurements from a tower and a directional waverider buoy at the site Östergarnsholm in the Baltic Sea, data used in this study have been sampled from the years 2005-2007. This site represents open-ocean conditions during most situations when the wind comes from the south-east sector. The neutral exchange coefficients, CEN and CHN, have been calculated along with the non-dimensional profile functions for temperature and wind to study the dependence of stability and other parameters of relevance.</p><p>It was found that CEN increased slightly with wind speed and reached a mean value of approximately 1.45×10-3. The highest values of CEN were observed during near neutral conditions and low wave ages. CHN attained a mean value of approximately 0.77×10-3 and did not show any relation to wind speed or to wave age. No significant dependence with wind or wave direction could be shown for either CEN or CHN in the sector 80-220°. The stability correction, performed to reduce the dependence on stratification for CEN and CHN, was well performed for stabilities higher than 0.15. The stability is represented by a relationship between the height and the Obukhov-length (z/L).</p><p>Validity of the non-dimensional profile functions for temperature and wind showed that, for smaller stabilities, these functions gave higher values than the corresponding functions recommended by Högström (1996). The profile funtions for temperature was shown to have a larger scatter while the profile functions for wind was less scattered and deviated more from the functions given by Högström</p> / <p>Kunskap om turbulenta flöden i det marina gränsskiktet är viktigt för att förstå växelverkan mellan atmosfär och hav. Med bättre kunskap kan förbättringar i bestämningen av utbyteskoefficienterna för latent och sensibelt värme erhållas. Det medför att modeller kan prognostisera väder och framtida klimat med högre noggrannhet.</p><p>Utbyteskoefficienterna för latent och sensibelt värme har för stabil skiktning olika värden i litteraturen. Detta gör det nödvändigt att undersöka de processer som påverkar utbytet av vattenånga och värme mellan luft och hav för att kunna bestämma dessa värden. Data som har använts i den här studien insamlades mellan år 2005 och 2007 från en boj och ett torn vid mätplatsen Östergarnsholm i Baltiska havet. För det flesta situationer, när vinden blåser från syd-ost, representerar mätplatsen ett förhållande likvärdigt det över öppet hav. De neutrala utbyteskoefficienterna, CEN och CHN, och de dimensionslösa profilfunktionera för temperatur och vind, och , har beräknats för att studera beroendet av stabilitet samt andra relevanta parametrar.</p><p>Beräkningarna visade att CEN ökade något med vindhastighet och hamnade på ett medelvärde av ungefär 1.45×10-3. De högsta värdena på CEN observerades vid nära neutrala förhållanden och låga vågåldrar. CHN uppmättes till att ha ett medelvärde på ungefär 0.77×10-3 och uppvisade inget beroende med vindhastighet eller vågålder. Inget märkbart beroende med vind- eller vågriktning kunde visas för CEN eller CHN i sektorn 80-220°. Stabilitetskorrektionen, utförd för att reducera beroendet av atmosfärens skiktning för CEN och CHN, var bra för stabiliteter högre än 0.15. Stabiliteten representeras av förhållandet mellan höjden och Obukhov-längden (z/L).</p><p>Utvärdering av de dimensionslösa funktionerna för temperatur och vind visade att dessa funktioner, för små stabiliteter, gav högre värden än motsvarande funktioner som rekommenderas av Högström (1996). Värdena på profilfunktionerna för temperatur hade större spridning än värdena på profilfunktionerna för vind och avvek mer från funktionerna givna av Högström.</p>
9

Fluxes of Sensible and Latent Heat and Carbon Dioxide in the Marine Atmospheric Boundary Layer

Sahlée, Erik January 2007 (has links)
<p>Oceans cover about 70% of the earth’s surface. They are the largest source of the atmospheric water vapour and act as enormous heat reservoirs. Thus in order to predict the future weather and climate it is of great importance to understand the processes governing the exchange of water vapour and heat between the ocean and atmosphere. This exchange is to a large extent mediated by turbulent eddies. Current numerical climate and weather forecast models are unable to resolve the turbulence, which means that the turbulent exchange needs to be simplified by using parameterizations. </p><p>Tower based measurements at the Östergarnsholm Island in the Baltic Sea have been used to study the air-sea turbulent exchange of latent and sensible heat and the heat flux parameterizations. Although the measurements are made at an island, data obtained at this site is shown to represent open ocean conditions during most situations for winds coming from the east-south sector. It is found that during conditions with small air-sea temperature differences and wind speeds above 10 m s<sup>-1</sup>, the structure of the turbulence is re-organized. Drier and colder air from aloft is transported to the surface by detached eddies, which considerably enhance the turbulent heat fluxes. The fluxes where observed to be much larger than predicted by current state-of-the-art parameterizations. The turbulence regime during these conditions is termed the Unstable Very Close to Neutral Regime, the UVCN-regime.</p><p>The global increase of the latent and sensible heat fluxes due to the UVCN-regime is calculated to 2.4 W m<sup>-2</sup> and 0.8 W m<sup>-2</sup> respectively. This is comparable to the current increase of the radiative forcing due to anthropogenic emissions of greenhouse gases, reported in Intergovernmental Panel on Climate Change fourth assessment report (IPCC AR4). Thus the UVCN-effect could have a significant influence when predicting the future weather and climate.</p>
10

Fluxes of Sensible and Latent Heat and Carbon Dioxide in the Marine Atmospheric Boundary Layer

Sahlée, Erik January 2007 (has links)
Oceans cover about 70% of the earth’s surface. They are the largest source of the atmospheric water vapour and act as enormous heat reservoirs. Thus in order to predict the future weather and climate it is of great importance to understand the processes governing the exchange of water vapour and heat between the ocean and atmosphere. This exchange is to a large extent mediated by turbulent eddies. Current numerical climate and weather forecast models are unable to resolve the turbulence, which means that the turbulent exchange needs to be simplified by using parameterizations. Tower based measurements at the Östergarnsholm Island in the Baltic Sea have been used to study the air-sea turbulent exchange of latent and sensible heat and the heat flux parameterizations. Although the measurements are made at an island, data obtained at this site is shown to represent open ocean conditions during most situations for winds coming from the east-south sector. It is found that during conditions with small air-sea temperature differences and wind speeds above 10 m s-1, the structure of the turbulence is re-organized. Drier and colder air from aloft is transported to the surface by detached eddies, which considerably enhance the turbulent heat fluxes. The fluxes where observed to be much larger than predicted by current state-of-the-art parameterizations. The turbulence regime during these conditions is termed the Unstable Very Close to Neutral Regime, the UVCN-regime. The global increase of the latent and sensible heat fluxes due to the UVCN-regime is calculated to 2.4 W m-2 and 0.8 W m-2 respectively. This is comparable to the current increase of the radiative forcing due to anthropogenic emissions of greenhouse gases, reported in Intergovernmental Panel on Climate Change fourth assessment report (IPCC AR4). Thus the UVCN-effect could have a significant influence when predicting the future weather and climate.

Page generated in 0.103 seconds