1 |
Experimental Testing of Shallow Embedded Connections Between Steel Columns and Concrete FootingsBarnwell, Nicholas Valgardson 01 March 2015 (has links) (PDF)
Shallow embedded column connections are widely used for columns resisting gravity loads in current design methods. These connections are usually considered “pinned” for structural analysis. In reality these connections fall in between a fixed and a pinned condition. Although methods exist to estimate the stiffness and strength of exposed columns or embedded columns under lateral loads, little research has been done to determine the strength of shallow embedded columns. An experimental study was carried out to investigate the strength of these connections. A total of 12 specimens with varying orientation, embedment depth, and column size were loaded laterally until failure or significant loss in strength. The results showed that shallow embedded connections are 86%-144% stronger in yielding and 32%-64% stronger in ultimate strength than current design methods would predict. This strength comes from a combination of the embedment depth and the resistance from the base plate and anchor rods. A model is proposed to explain the strength of the specimens and to conservatively estimate the strength of specimens with different variables. The specimens also exhibited stiffness ranging from 50%-75% of what would be expected from fully embedded columns.
|
2 |
Stiffness Model of a Die SpringForrester, Merville Kenneth 17 May 2002 (has links)
The objective of this research is to determine the three-dimensional stiffness matrix of a rectangular cross-section helical coil compression spring. The stiffnesses of the spring are derived using strain energy methods and Castigliano's second theorem.
A theoretical model is developed and presented in order to describe the various steps undertaken to calculate the spring's stiffnesses. The resulting stiffnesses take into account the bending moments, the twisting moments, and the transverse shear forces. In addition, the spring's geometric form which includes the effects of pitch, curvature of wire and distortion due to normal and transverse forces are taken into consideration.
Similar methods utilizing Castigliano's second theorem and strain energy expressions were also used to derive equations for a circular cross-section spring. Their results are compared to the existing solutions and used to validate the equations derived for the rectangular cross-section helical coil compression spring.
A finite element model was generated using IDEAS (Integrated Design Engineering Analysis Software) and the stiffness matrix evaluated by applying a unit load along the spring's axis, then calculating the corresponding changes in deformation. The linear stiffness matrix is then obtained by solving the linear system of equations in changes of load and deformation. This stiffness matrix is a six by six matrix relating the load (three forces and three moments) to the deformations (three translations and three rotations). The natural frequencies and mode shapes of a mechanical system consisting of an Additional mass and the spring are also determined.
Finally, a comparison of the stiffnesses derived using the analytical methods and those obtained from the finite element analysis was made and the results presented. / Master of Science
|
3 |
Using Collapsible Systems to Mitigate Buckling in Thin Flexible Instruments in Robotic SurgerySargent, Brandon Scott 01 April 2018 (has links)
Robotic surgery procedures may include long, thin flexible instruments that are inserted by the robot into the patient. As the robot inserts these devices, due to their geometry, they are prone to buckling failure. To mitigate buckling failure, a support system is needed on the robot. This system supports the device but also adapts to the varying ex vivo length of the device as it is inserted. This work presents four collapsible support systems designed to mitigate buckling failure of long, thin instruments while accounting for changing length. The Ori-Guide is an origami-inspired system that has enabled a part reduction from traditional rigid systems with over 70 parts to 3 parts. This system was enabled through the development of a novel origami pattern that integrates both actuation and support into the same pattern. This system was made from PET and performed as well as a rigid system. The PET used in the Ori-Guide was thermo-processed to hold a folded shape. The heat treatment put the Ori-Guide into tension and enabled a stiffer support system. Work was done to investigate the effect of thermo-processing on PET films used in origami-inspired engineering applications. It was discovered that there is a strong correlation between crystallization and the stiffness of a crease in the polymer film. The Zipper-Tube Reinforcement (ZTR) was developed to provide constant support along the entire length of the device, something that no other support device provides. This enables higher loads on the device and thinner and more flexible devices. It was developed as a tube that envelopes the device and zips to provide a tube to support the device then unzips to lay flat rolled about a mandrel for storage. The Wires in Tension concept was developed by focusing on adding tension to the support system. It provided support to the device but required high levels of force on the robot arm so the Orthogonal Beams was developed. The Orthogonal Beams employs geometry as the primary support rather than tension and therefore could provide higher support with less force on the robot. These systems all proved effective ways to support flexible devices. The concepts could also find application in other fields. The merits of each system are discussed in detail, including a discussion on other possible applications.
|
4 |
Finite Element Modeling of Shallowly Embedded Connections to Characterize Rotational StiffnessJones, Trevor Alexander 01 May 2016 (has links)
Finite element models were created in Abaqus 6.14 to characterize the rotational stiffness of shallowly embedded column-foundation connections. Scripts were programmed to automate the model generation process and allow study of multiple independent variables, including embedment length, column size, baseplate geometry, concrete modulus, column orientation, cantilever height, and applied axial load. Three different connection types were investigated: a tied or one part model; a contact-based model; and a cohesive-zone based model. Cohesive-zone modeling was found to give the most accurate results. Agreement with previous experimental data was obtained to within 27%. Baseplate geometry was found to affect connection stiffness significantly, especially at lower embedment depths. The connection rotational stiffness was found to vary only slightly with cantilever height for typical column heights. Results from varying other parameters are also discussed.
|
5 |
Seismic Strengthening Of Masonry Infilled Reinforced Concrete Frames With Precast Concrete PanelsSusoy, Melih 01 December 2004 (has links) (PDF)
Over 90% of the land area of Turkey lies over one of the most active seismic zones in the world. Hazardous earthquakes frequently occur and cause heavy damage to the economy of the country as well as human lives. Unfortunately, the majority of buildings in Turkey do not have enough seismic resistance capacity. The most commonly observed problems are faulty system configuration, insufficient lateral stiffness, improper detailing, poor material quality and mistakes during construction. Strengthening of R/C framed structures by using cast-in-place R/C infills leads to a huge construction work and is time consuming. On the other hand, using prefabricated panel infills can be preferred as a more feasible, rapid and easy technique during which the structure can remain operational.
The aim of this experimental study is to observe the seismic behavior of R/C frames strengthened by precast concrete panel infills by testing different types of panel and connection designs in eight single-story single-bay reinforced concrete
frame specimens.
|
6 |
Seismic Design Of Cold Formed Steel Structures In Residential ApplicationsUygar, Celaletdin 01 May 2006 (has links) (PDF)
iv
ABSTRACT
SEISMIC DESIGN OF COLD FORMED STEEL STRUCTURES IN
RESIDENTIAL APPLICATIONS
Uygar, Celaletdin
M.Sc., Department of Civil Engineering
Supervisor: Prof. Dr. Ç / etin Yilmaz
May 2005, 82 pages
In this study, lateral load bearing capacities of cold formed steel framed wall panels are investigated. For this purpose lateral load bearing alternatives are analyzed numerically by computer models and results are compared with already done
experimental studies and approved codes.
In residential cold formed steel construction, walls are generally covered with cladding material like oriented strand board (OSB) or plywood on the exterior wall surface and these sheathed light gauge steel walls behave as shear walls with significant capacity. Oriented strand board is used in analytical models since OSB claddings are most commonly used in residential applications. The strength of shear walls depends on different parameters like screw spacing, strength of sheathing, size of fasteners used and aspect ratio. SAP2000 software is used for structural analysis of walls and joint force outputs are collected by Microsoft Excel.
The yield strength of shear walls at which first screw connection reaches its shear capacity is calculated and load carrying capacity per meter length is found. The nonlinear analysis is also done by modeling the screw connections between OSB and frame as non-linear link and the nominal shear capacities of walls are calculated for different screw spacing combinations. The results are consistent with the values in shear wall design Guide and International Building Code 2003. The other lateral load bearing method is flat strap X-bracing on wall surfaces. Various parameters like wall frame section thickness, flat strap area, aspect ratio and bracing number are investigated and results are evaluated.
The shear walls in which X-bracing and OSB sheathing used together are also analyzed and the results are compared with separate analyses.
|
7 |
Rotational Strength and Stiffness of Shallowly Embedded Base Connections in Steel Moment FramesHanks, Kevin N. 01 October 2016 (has links)
Shallowly embedded column base connections with unreinforced block out concrete are a common method of connecting steel columns to their foundation. There has been little research done to accurately quantify the effects of this block out concrete on the connection strength and rigidity, and therefore there is nothing to aid the practicing engineer in accounting for this in structural analysis. Due to this lack of understanding, engineers have typically ignored the effects of shallow block out concrete in their analysis, presumably leading to a conservative design. Recent research has attempted to fill this gap in understanding. Several methods have been proposed that seek to quantify the effects of shallow block out concrete on a column base connection. Barnwell proposed a model that predicts the strength of a connection. Both Jones and Tryon used numerical modeling to predict the rotational stiffness of the connection. An experimental study was carried out to investigate the validity of these proposed models. A total of 8 test specimens were created at 2/3 scale with varying column sizes, connection details, and embedment depths. The columns were loaded laterally and cyclically at increasing displacements until the connection failed. The results show that the strength model proposed by Barnwell is reasonable and appropriate, and when applied to this series of physical tests produce predictions that have an observed/predicted ratio of between 0.95 to 1.39. The results also show that methods for estimating the rotational stiffness of the connection at the top of the block out concrete, as proposed by Jones and Tryon also produce reasonable values that had observed/predicted ratios of between 0.93 to 1.47. An alternative model for determining a design value for the rotational stiffness of a shallowly embedded column base plate is also proposed. When the embedment depth to column depth ratio is greater than 1.22, the connection is sufficiently rigid and at small deflections (less than 1% story drift) may be accurately modelled with infinite rotational stiffness (a "fixed" connection) at the base of the column.
|
8 |
Lateral Torsional Buckling of Timber Built-up BeamsRobatmili, Robabeh 11 May 2022 (has links)
Built-up timber beams consist of individual lumber laminations connected together using mechanical fasteners such as nails, bolts and screws. Lateral torsional buckling (LTB) is an important failure mode that needs to be considered in deep beams with long spans and insufficient lateral supports. Due to the mechanical connectors, built-up beams are expected to have a lower moment capacity compared with solid beams with similar dimensions. The behaviour of built-up beams is greatly affected by the stiffness of the fasteners joining the individual laminations and determining the level of partial composite action attained in the beam. The current research aims to investigate the buckling behaviour of timber built-up beams. This is done by initially investigating the important parameters that play a role in the behaviour through an extensive sensitivity analysis. The focus of the analysis is on the contribution of the connections, since the buckling behaviour of individual solid timber beam element has been relatively well-established. Input parameters for the connection properties are obtained from joint level experimental tests. Finally, recommendations for specific fastener patterns and accompanying reduction factors on the buckling capacity relative to equivalent solid sections are developed and proposed.
|
Page generated in 0.1171 seconds