• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 2
  • 1
  • Tagged with
  • 31
  • 17
  • 13
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The response of vertical piles to lateral loading and moment

Fulthorpe, J. N. January 1986 (has links)
No description available.
2

Study on Degradation mechanism of Crystallized Laterally Grown Poly-Si TFT under Electrical Stress

Chao, Tsai-Lun 10 July 2007 (has links)
In this thesis, we will investigate the degradation of the low temperature polycrystalline silicon TFTs (LTPS TFTS) under the electrical stress. The electrical stress is divided into two parts of ac stress and dc stress. We used ac stress and dc stress conditions to stress different TFTs respectively and investigate the influence of grain boundary in n-type TFT and p-type TFT by use of electrical analysis. On the other hand, degradation mechanism was confirmed by measured capacitance. In n-type TFT, the SLS poly-Si TFT which contains GB perpendicular to the channel direction owns the higher ability against dc stress and poorer ability against ac stress than the poly-Si TFT which does not contain GB. The physical mechanism for these results has been reasonably deduced by use of TFT device simulation tool (ISE_TCAD). In p-type TFT, the enhancement phenomenon is always observed after dc or ac stress. There are both existed a power-law between the variation of the drain current with stress time. The slope of power-law is related to the shortening speed of effective channel length. In either dc stress or ac stress, there are two effective factors. The one factors of them is the degradation of poly-Si film, and another one is the effective channel length shortening. In the competition of these two effective factors, the GB-TFT has more obvious enhancement than GB-TFT during dc stress. Nevertheless, during the ac stress the GB-TFT is without larger enhancement than NGB-TFT because of serious poly-Si film damage.
3

Critical assessment of existing slope stability formulae and application to slope stabilisation

Firat, Seyhan January 1998 (has links)
In this research, extensive use has been made of limit equilibrium methods of analysis for studying the stability of slopes. For the determination of the factor of safety (FOS) of slopes, the usual two-step process has been adopted; (a) assuming a slip surface for the soil mass, and (b) using the appropriate limit equilibrium equation(s). Eight wellknown limit equilibrium methods have been programmed to calculate different FOS values. The comparative performance of the various analyses has been carried out successfully using case studies. The innovative use of Gauss quadrature to calculate the FOS values has been shown to reducet he iterative sequencesd ramatically with no loss of accuracy. A visco-plastic flow model has been proposed to estimate lateral forces on piles used for slope stabilisation. The present research data occupies an "in-between" position to the previously reported values, with the variation trend being confirmed satisfactorily in all cases. Slope stabilisation due to the presence of a row of piles has been investigated using two distinct lateral load estimations. These include theories of plastic deformation and the proposed visco-plastic flow which are modelled and implemented in a computer program. Eight well-known methods of slope stability analyses have been adopted and computer coded to re-calculate FOS values for a slope reinforced by a row of piles. A Finite Element computer program has been developed to evaluate the displacement, bending moment and shear force along the pile axis. The pile is analysed at two levels above and below the slip failure surface.
4

The Effects of Basin Slope and Boundary Friction on the Character and Plunge Location of Hyperpycnal Flows Entering a Laterally Unbounded Basin

Bhide, Shantanu Vidyadhar 19 June 2019 (has links)
This thesis focuses on the behaviour of hyperpycnal plumes in river mouth discharges. The plunging of high density flows in two dimensional channels has been extensively studied before. A fundamental assumption in these studies is that the flow is laterally confined. These studies allow the flow to plunge only in two directions, the horizontal x-direction and the vertical z-direction. The goal of this study is to determine if there is observable plunging of hyperpycnal flows in the lateral y-direction, i.e. lateral spreading, in a three dimensional domain and to find out the parameters influencing the lateral spread. Previous studies conducted in laterally confined channels suggest that hyperpycnal flows plunge when the flow reaches a densimetric Froude number of unity. This study attempts to find the densimetric Froude number at hyperpycnal plunging in a three dimensional domain and if it is influenced by the factors that also influence the spread. This study also analyzes whether the cross-shore location for plunging changes when lateral spreading is accounted for, relative to a two dimensional analysis and if the plunging is limited to flow reaching a certain depth. This was accomplished through a series of experimental simulations on a hypothetical river mouth domain using Delft-3D, a hydrodynamic modeling software. Three parameters viz. the bottom slope of the receiving basin, the bottom friction and the density difference between inflow and ambient liquid were varied to test their influence on the plume spread rate. / Master of Science / It is crucial for researchers to have the expertise in modeling flow processes that develop in oceans, lakes and reservoirs in order to aid efforts in improving conditions for water quality within such domains. Hyperpycnal flows, also commonly known as high density flows are among one of the the less studied phenomenon in this discipline. This phenomenon occurs when a river carrying water with high density flows into an ocean, lake or a reservoir containing water with a lower density. Such flow regimes cause the inflow to submerge and sink to the bottom (plunge) and form a density current on the bed of the receiving basin. Studying density flows is important to model the transport of sediments, dissolved solids or pollutants. This study aims to improve the existing understanding of hyperpycnal plumes, their plunge location and spread in a three dimensional domain. For this, a simulation software Delft3D was used to build a model that is representative of the system and closely resembles the flow processes taking place in the aforementioned domains. Simulations were then run to collect data on how factors like the initial flow conditions (∆ρ), the basin slope (S) and friction (Chézy coefficient, Cz) have an impact on the phenomenon. This data was then compared to previous analyses to show the difference in plume behaviour and prediction of plunging. This study serves as a stepping stone in the ultimate goal of developing a prediction model for hyperpycnal plumes, indicating that Delft3D is a promising tool for analyzing such phenomenon.
5

ACHIEVING HIGHER EFFICIENCY IN VIDEO / TELEMETRY / DIGITAL TRANSMITTERS USING LATERALLY DIFFUSED METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTORS (LDMOSFETs)

Lautzenhiser, Lloyd L. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / A 10- or 20-Watt, L- or S-band transmitter commonly consumes the majority of the available DC power on a telemetry pack -- often more than all the remaining components combined. A new family of transistors allows a substantial increase in DC to RF efficiency without the use of complex and costly switching regulators. With ever increasing data rates requiring more RF bandwidth (and correspondingly lower receiver sensitivities), transmitters using these transistors offer twice the RF power at little or no increase in DC current. Alternately, in other situations such as observation balloons, the same RF power can be achieved with approximately 40% less current resulting in significantly longer mission life. This paper describes the method for achieving higher efficiency transmitters using new LDMOSFETs.
6

Lateral Resistance of Pipe Piles Near 20-ft Tall MSE Abutment Wall with Strip Reinforcements

Besendorfer, Jason James 01 July 2015 (has links)
Full scale lateral load testing was performed on four 12.75x0.375 pipe piles spaced at 3.9, 2.9, 2.8, and 1.7 pile diameters behind an MSE wall which was constructed for this research to determine appropriate reduction factors for lateral pile resistance based on pile spacing behind the back face of the wall. The load induced on eight soil reinforcements located at various transverse distances from the pile and at different depths was monitored to determine the relationship between lateral load on the pile and load induced in the reinforcement. Each pile was loaded towards the wall in 0.25 in. increments to a total deflection of 3.0 in. Additionally, wall panel displacement was also monitored to determine if it remained in acceptable bounds. The results of the research indicate that pile resistance tends to decrease as spacing decreases. P-multipliers for the 3.9, 2.9, 2.8, 1.7D tests were found to be 1.0, 1.0, 1.0, and 0.5, respectively using back-analysis with the computer model LPILE. However, these multipliers are higher than expected based on previous testing and research. Piles spaced further than 3.8D can be assumed to have no interaction with the wall. The resistance of piles spaced closer to the wall than 3.8D can be modeled in LPILE using a p-multiplier less than 1.0. The reinforced backfill can be modeled in LPILE using the API Sand (1982) method with a friction angle of 31º and a modulus of approximately 60 pci when a surcharge of 600 psf is applied. If no surcharge is applied, a friction angle of 39º and modulus of 260 pci is more appropriate. Maximum wall panel displacement was highest for the 2.8D test and was 0.35 in. at 3.0 in. of pile head displacement. For all the other tests, the maximum wall displacement at 3.0 in. of pile head displacement was similar and was approximately 0.15 inches. Induced load in the soil reinforcement increases with depth to the 2nd or 3rd layer of reinforcement after which it decreases. Induced load in the reinforcement increases as pile spacing decreases. Induced load in the reinforcement decreases rapidly with increased transverse distance from the pile. Induced load in the reinforcement can be estimated using a regression equation which considers the influence of pile load, pile spacing behind the wall, reinforcement depth or vertical stress, and transverse spacing of the reinforcement.
7

Contact Mechanics Of A Graded Surface With Elastic Gradation In Lateral Direction

Ozatas, Cihan A. 01 January 2003 (has links) (PDF)
Today, nonhomogeneous materials are used in many technological applications. Nonhomogeneity can be introduced intentionally in order to improve the thermomechanical performance of material systems. The concept of functionally graded materials (FGMs) is an example of such an application. Nonhomogeneity can also be an intrinsic property of some of the natural materials such as natural soil. The main interest in this study is on the contact mechanics of nonhomogeneous surfaces. There is an extensive volume of literature on the contact mechanics of nonhomogeneous materials. In most of these studies, the elastic gradation is assumed to exist in depth direction. But, it is known that elastic gradation may also exist laterally. This may either occur naturally as in the case of natural soil or may be induced as a result of the applied processing technique as in the case of FGMs. The main objective in this study is therefore to examine the effect of the lateral nonhomogeneities on the contact stress distribution at the surface of an elastically graded material. In the model developed to examine this problem, a laterally graded surface is assumed to be in sliding contact with a rigid stamp of arbitrary profile. The problem is formulated using the theory of elasticity and reduced to a singular integral equation. The integral equation is solved numerically using a collocation approach. By carrying out parametric studies, the effects of the nonhomogeneity constants, coefficient of friction and stamp location on the contact stress distribution and on the required contact forces are studied.
8

Probabilistic Based Assessment of the Influence of Nonlinear Soil Behavior and Stratification on the Performance of Laterally Loaded Drilled Pier Foundations

January 2014 (has links)
abstract: This thesis presents a probabilistic evaluation of multiple laterally loaded drilled pier foundation design approaches using extensive data from a geotechnical investigation for a high voltage electric transmission line. A series of Monte Carlo simulations provide insight about the computed level of reliability considering site standard penetration test blow count value variability alone (i.e., assuming all other aspects of the design problem do not contribute error or bias). Evaluated methods include Eurocode 7 Geotechnical Design procedures, the Federal Highway Administration drilled shaft LRFD design method, the Electric Power Research Institute transmission foundation design procedure and a site specific variability based approach previously suggested by the author of this thesis and others. The analysis method is defined by three phases: a) Evaluate the spatial variability of an existing subsurface database. b) Derive theoretical foundation designs from the database in accordance with the various design methods identified. c) Conduct Monti Carlo Simulations to compute the reliability of the theoretical foundation designs. Over several decades, reliability-based foundation design (RBD) methods have been developed and implemented to varying degrees for buildings, bridges, electric systems and other structures. In recent years, an effort has been made by researchers, professional societies and other standard-developing organizations to publish design guidelines, manuals and standards concerning RBD for foundations. Most of these approaches rely on statistical methods for quantifying load and resistance probability distribution functions with defined reliability levels. However, each varies with regard to the influence of site-specific variability on resistance. An examination of the influence of site-specific variability is required to provide direction for incorporating the concept into practical RBD design methods. Recent surveys of transmission line engineers by the Electric Power Research Institute (EPRI) demonstrate RBD methods for the design of transmission line foundations have not been widely adopted. In the absence of a unifying design document with established reliability goals, transmission line foundations have historically performed very well, with relatively few failures. However, such a track record with no set reliability goals suggests, at least in some cases, a financial premium has likely been paid. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2014
9

Effect Of Lateral Streamline Divergence Under Constant Pressure On Transition Zone Characteristics

Ramesh, O N 04 1900 (has links) (PDF)
No description available.
10

Lateral Resistance of Grouped Piles Near 20-ft Tall MSE Abutment Wall with Strip Reinforcements

Farnsworth, Zachary Paul 10 August 2020 (has links)
A team from Brigham Young University and I performed full-scale lateral load tests on individual and grouped 12.75x0.375 inch pipe piles spaced at varying distances behind an MSE wall. The individually loaded pile which acted as a control was spaced at 4.0 pile diameters from the wall face, and the three grouped piles which were loaded in unison were spaced at 3.0, 2.8, and 1.8 pile diameters from the wall face and transversely spaced at 4.7 pile diameters center-to-center. The purpose of these tests was to determine the extent of group effects on lateral pile resistance, induced loads in soil reinforcements, and MSE wall panel deflections compared to those previously observed in individually laterally loaded piles behind MSE walls. The computer model LPILE was used in my analysis of the measured test data. The p-multipliers back-calculated with LPILE for the grouped piles were 0.25, 0.60, and 0.25 for the grouped piles spaced at 3.0, 2.8, and 1.8 pile diameters from the wall, respectively. These values are lower than that predicted for piles at the same pile-to-wall spacings using the most recent equation for computing p-multipliers. I propose the use of an additional p-multiplier for grouped piles near an MSE wall, a group-effect p-multiplier, to account for discrepancies between individual and grouped pile behaviors. The group effect p-multipliers were 0.35, 0.91, and 0.74 for the grouped piles spaced at 3.0, 2.8, and 1.8 pile diameters from the wall, respectively. The average group-effect p-multiplier was 0.66. Additionally, I used LPILE to analyze test data from Pierson et al. (2009), who had previously performed full-scale lateral load tests of individual and grouped shafts. In said analysis, the group of three 3-foot diameter concrete shafts spaced at 2.0 shaft diameters from the wall face and transversely spaced at 5.0 shaft diameters center-to-center had an average group effect p-multiplier of 0.78. As in previous studies, the induced forces in soil reinforcements in this study were greatest either near the locations of the test piles or at the MSE wall face. The most recent equation for calculating the maximum induced force in a soil reinforcement strip was reasonably effective in predicting the measured maximum loads when superimposed between the test piles, with 65% and 85% of the data points falling within the one and two standard deviation boundaries, respectively, of the original data used to develop the equation. Deflection of the MSE wall panels was greater during the grouped pile test than was previously observed for individually loaded piles under similar pile head deflections--with a maximum wall deflection of 0.31 inch compared to the previous average of 0.10 inch for pile head deflections of about 1.25 inches.

Page generated in 0.2226 seconds