• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 2
  • 1
  • Tagged with
  • 31
  • 17
  • 13
  • 12
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Lateral Resistance of 24-inch Statically Loaded and 12.75-Inch Cyclically Loaded Pipe Piles Near a 20-ft Mechanically Stabilized Earth (MSE) Wall

Wilson, Addison Joseph 03 December 2020 (has links)
Installing load bearing piles within the reinforcement zone of mechanically stabilized earth (MSE) retaining walls is common practice in the construction industry. Bridge abutments are often constructed in this manner to adapt to increasing right-of-way constraints, and must be capable of supporting horizontal loads imposed by, traffic, earthquakes, and thermal expansion and contraction. Previous researchers have concluded that lateral pile resistance is reduced when pile are placed next to MSE walls but no design codes have been established to address this issue. Full –scale testing of statically applied lateral loads to four 24”x0.5” pipe piles, and cyclically applied lateral load to four 12.75”x0.375” pipe piles placed 1.5-5.3 pile diameters behind a 20-foot MSE wall was performed. The MSE wall was constructed using 5’x10’ concrete panels and was supported with ribbed strip and welded wire streel reinforcements. The computer software LPILE was used to back-calculate P-multipliers for the 24” piles. P-multipliers are used to indicate the amount of reduction in lateral resistance the piles experience due to their placement near the MSE wall. Previous researchers have proposed that any pile spaced 3.9 pile diameters (D) or more away from the MSE wall will have a P-multiplier of 1; meaning the pile experiences no reduction in lateral resistance due to its proximity to the wall. P-multipliers for piles spaced closer than 3.9D away from the wall decrease linearly as distance from the wall decreases. P-multipliers for the 24” piles spaced 5.1D, 4.1D, 3.0D, and 2.0D were 1, 0.84, 0.55, and 0.44 respectively. Lateral resistance of the 12.75” cyclically loaded piles decreased as the number of loading cycles increased. Lateral resistance of the piles when loads were applied in the direction of the wall was less than the lateral resistance of the piles when loads were applied away from the wall at larger pile head loads. The maximum tensile force experienced by the soil reinforcements generally occurred near the wall side of the pile face when the lateral loads were applied in the direction of the wall. Behind the pile, the tensile force decreased as the distance from the wall increased. Equation 5-4, modified from Rollins (2018) was found to be adequate for predicting the maximum tensile force experienced by the ribbed strip reinforcements during the static loading of the 24” pipe piles, particularly for lower loads. About 65% of the measured forces measured in this study fell within the one standard deviation boundary of the proposed equation.
12

Lateral Resistance of Piles Near Vertical MSE Abutment Walls

Price, Jacob S. 07 August 2012 (has links) (PDF)
Full scale lateral load tests were performed on five piles located at various distances behind MSE walls. Three of the five test piles were production piles used to support bridges, and the other two piles were located behind a MSE wing walls adjacent to the bridge abutment. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force resisted by the MSE reinforcement. Tentative curves have been developed showing p-multiplier vs. normalized spacing behind wall for a length to height ratio of 1.1 and 1.6. The data suggest that with a L/H ratio of 1.6, a p-multiplier of 1 can be used when the normalized distance from the back face of the MSE wall to the center of the pile is at least 3.8 pile diameters. When the L/H ratio decreases to 1.1 a p-multiplier of 1 can be used when the pile is at least 5.2 pile diameters behind the wall. A plot showing the induced load in the reinforcement as a function of distance from the pile has been developed. The data in the plot is normalized to the maximum lateral load and to the spacing from the wall to the pile. The best fit curve is capped at a normalized induced force of approximately 0.15. The data show that the induced force on the reinforcement when a lateral load is applied to the piles decreases exponentially as the normalized distance from the pile increases. The plot is limited to the conditions tested, i.e. for the reinforcement in the upper 6 ft. of the wall with L/H values ranging from 1.1 to 1.6.
13

Lateral Resistance of Piles near 15 Foot Vertical MSE Abutment Walls Reinforced with Ribbed Steel Strips

Han, Jarell 01 December 2014 (has links) (PDF)
ABSTRACTLateral Resistance of Piles near 15 Foot Vertical MSE AbutmentWalls Reinforced with Ribbed Steel StripsJarell Jen Chou HanDepartment of Civil and Environmental Engineering, BYUMaster of ScienceA full scale MSE wall was constructed and piles were driven at various distances behind the wall. Lateral load tests were conducted to determine the effect of pile spacing from the wall on the lateral resistance of the piles and the force resisted by the MSE reinforcement. The piles used for this study were 12.75 inch pipe piles and the reinforcements were ribbed steel strips.Load-deflection curves were developed for piles located behind the wall at 22.4 inches (1.7 pile diameters), 35.4 inches (2.8 pile diameters), 39.4 inches (3.1 pile diameters) and 49.9 inches (3.9 pile diameters). Data results show that the lateral resistance of the pile decreases as the spacing behind the wall decreases. Measured load-deflection curves were used to compare with computed curves from LPILE with p-multiplier developed for the lateral resistance of piles closer to the wall. A curve was created showing the variation of p-multiplier with normalized pile spacing behind the wall. The curve suggests that a p-multiplier of 1 (no reduction in lateral resistance) can be used when a pile is placed at least four pile diameters from the back face of the wall.
14

Prediction Equations to Determine Induced Force on Reinforcing Elements Due to Laterally Loaded Piles Behind MSE Wall and Lateral Load Test on Dense Sand

Garcia Montesinos, Pedro David 17 December 2021 (has links)
Researchers performed 35 full-scale lateral load tests on piles driven within the reinforcement zone of a mechanically stabilized earth wall (MSE wall). Data defining the induced tensile force on the reinforcements during lateral pile loading was used to develop multi-linear regression equations to predict the induced tensile force. Equations were developed by previous researchers that did not consider the diameter of the pile, the fixed head condition, relative compaction, or cyclic loading. The purpose of this research was to include this tensile force data and develop prediction equations that considered these variables. Additionally, a full-scale lateral load test was performed for a 24-inch diameter pipe pile loaded against a 20-inch width square pile. The test piles were instrumented using load cells, string potentiometers, LVDTs, strain gauges and hybrid pressure sensors. The lateral load tests were used to evaluate the ability of finite difference (LPILE) and finite element (PLAXIS3D) models to compute results comparable to the measured results. The results of this analysis showed that the diameter of the pile is a statistically significant variable for the prediction of induced tensile force, and the induced tensile force is lower for piles with larger diameter. Fixed head conditions have no effect on the prediction of induced tensile force. Cyclic loading had minimal impact on the prediction of induced tensile force, but relative compaction did have an important statistical significance. Therefore, prediction equations for induced tensile force in welded wire were developed for relative compaction less than 95 percent and relative compaction greater or equal than 95 percent. A general prediction equation (Eq. 3-4) was developed for ribbed-strip reinforcements that included the effect of pile diameter and larger head loads. With 1058 data points, this equation has an R2 value of 0.72. A general prediction equation (Eq. 3-9) was also developed for welded-wire reinforcements that included data from cyclic and static loading, fixed and free head conditions, and relative compaction for 12-inch wide piles with a higher range of pile head loads. This equation based on 2070 data points has an R2 value of 0.72. The prediction equations developed based on all the available data are superior to equations developed based on the original set of field tests. The finite element models produced results with good agreement with pipe pile measurements while the finite difference model showed better agreement with the square pile measurements. However, for the denser backfills involved, back-calculated soil properties were much higher than would be predicted based on API correlations. The API equations are not well-calibrated for dense granular backfills.
15

High-Efficiency Membrane Chromatography Devices for Downstream Purification of Biopharmaceuticals: Design, Development, and Applications

Madadkar, Pedram January 2017 (has links)
The biopharmaceutical industry has experienced remarkable progress in the upstream production capacity of life-saving proteins. This is while the downstream processing has failed to keep pace, including unit operations which are working close to their physical limit with no economy of scale. Column chromatography which is an integral unit in different stages of downstream purification is considered as the major bottleneck in this section. The packed-bed resin media is costly and the processes are labor-intensive and extremely time consuming. Membrane chromatography which uses a stack of adsorptive membranes as the chromatographic media is one of the most promising alternatives for conventional chromatography techniques. The performance of membrane adsorbers is consistent over a wide range of flow rates which is owing to the dominance of convective solute transport as opposed to the diffusion-based nature of mass transfer within the pores of the resin beads. This translates to much higher productivity and considerably lower buffer consumption (even as high as 95%), leading to much lower overall processing costs. The other advantages are significantly lower footprints and decreased pressure drops, both contributing to diminished capital costs. Membrane adsorbers are greatly scalable and used in a single-use manner. The latter eliminates the cleaning and validation steps and brings about much shorter processing times and higher flexibility in process development. Due to the performance advantages of membrane chromatography, this technique is now widely used in purification of high volumes of samples in late-stage polishing. Currently available membrane adsorbers have radial-flow spiral-wound configuration with high frontal surface area to bed height ratio according to which dilute impurities are removed in a flow-through format at very high flow rates and low pressure drops. Nevertheless, they fail to give high-resolution for bind-and-elute separations which makes them unsuitable for many unit operations, highly restricting their application. Severe design deficiencies such as large dead volumes and varying membrane area over the bed height result in broad and poorly resolved peaks. Herein, a novel device design was successfully developed which addresses the abovementioned shortcomings. The laterally-fed membrane chromatography (LFMC) devices house a stack of rectangular membrane sheets with two rectangular lateral channels on both sides of the stack as the feed and permeate channels. The design offers balanced pressure over the sides of the stack as well as even solute flow path lengths due to which the solute residence time is very uniform. Also, the small dead volumes minimize the dispersion effects. These features make the LFMC technology highly suitable for bind-and-elute applications, the improvement which is brought about by a simple design. The devices are easy to fabricate and highly scalable. The LFMC devices containing cation-exchange (CEX) membranes with 7 mL bed volume were examined for bind-and-elute separation where they outperformed the equivalent commercially available radial-flow devices. The design was further modified to give even lower dead volumes and more cost-effective fabrication. The latest embodiment of the device gave resolutions which were comparable with the ones obtained with the commercially packed resin columns in 1 mL and 5 mL scale with consistency over wide range of flow rates. The results were all acquired using a three component model protein system. Upon the approval of suitability of the device for bind-and-elute separation, the CEX-LFMC was used for purification of monoclonal antibodies (mAbs), the largest class of biopharmaceuticals. The device showed great performance in separation of mAb charge variants when extensively shallow gradients (60 membrane bed volumes) were required. The devices offered very stable conductivity gradients at high flow rates. LFMC devices in three different preparative scales gave great performance in separation of mAb aggregates which was approved for different mAb samples. The other application studied with the CEX-LFMC devices was the single-step preparative purification of mono-PEGylated proteins which is as well very challenging due to the physicochemical similarities between the target molecules and the impurities. Collectively, the LFMC devices combine the high-resolution with high-productivity which is highly desirable in downstream purification of biological molecules with great potential to expand the application of membrane chromatography. Finally, the LFMC devices were modified to adapt the analytical scale where they were integrated with a stack of hydrophilized PVDF membranes. The device successfully delivered ultra-fast separation of mAb aggregates in less than 1.5 minutes based on hydrophobic interaction membrane chromatography (HIMC). The assay times achieved with the HI-LFMC technique outclassed the currently available ultra-high performance chromatography (UPLC) methods at the same time with being extremely cost-effective. The application of the LFMC technology in analytical scale has great potential to offer cheap and rapid analysis in process development and quality control section of biopharmaceutical manufacturing. / Thesis / Doctor of Philosophy (PhD)
16

Response of Pile-Supported T-Walls to Fill Loading and Flood Loading Based on Physical Model Studies and Numerical Analyses

Reeb, Alexander Brenton 21 January 2016 (has links)
Pile-supported T-walls, which are concrete floodwalls that are shaped like an inverted "T" and supported by batter piles, are commonly used by the United States Army Corps of Engineers (USACE) to protect low-lying portions of New Orleans and other areas. The design of a T-wall in southern Louisiana is complex, as the structure needs to resist both 1) large settlements caused by fill placed beneath and beside the T-wall before T-wall construction or by fill placed beside the T-wall after T-wall construction, and 2) large lateral flood loads that are imposed during a hurricane. As a result of these loading conditions, large bending moments can develop in the batter piles and these moments need to be accounted for as part of the T wall design. The goal of this research is to develop a more complete understanding of the pile bending moments in T wall systems, specifically for cross sections where large settlements may occur. As a first step towards this goal, Rensselaer Polytechnic Institute (RPI) performed a series of eight centrifuge tests to investigate and physically model the effects of settlement-induced bending moments on pile-supported T-walls. The centrifuge tests were evaluated and interpreted, and in order to better capture uncertainty, upper and lower bounds were estimated for the interpreted data. The centrifuge results offered some valuable insights on their own, but were ultimately used as the basis for validating and calibrating corresponding numerical models. The numerical models were developed following a rigorous modeling approach and using rational and reasonable assumptions based on widely-accepted and well-justified procedures. The numerical model results were in good agreement with the centrifuge results without the need for significant calibration or modifications. This good agreement indicates that similar numerical models can be developed to reliably analyze actual T-wall cross sections. Detailed recommendations were developed for using numerical models to analyze pile-supported T walls, and an example problem is presented herein that illustrates the application of this approach. These same techniques were then used to perform a parametric study to analyze the combined and separate effects of flood loading for a wide range of different T-wall cross sections. The range was selected in collaboration with the USACE in order to reasonably cover cross sections and conditions that 1) are typically encountered in practice, and 2) were expected to generate both upper and lower bound pile bending moments. In total, 3,648 cross sections were analyzed, and 29,184 sets of analysis results were generated since each cross section was analyzed for eight different loading conditions. Summary results are provided to show the influence of the loading conditions and parameters on T-wall response, including the influence of flood loading, new fill symmetry, pile fixity, number of piles, subsurface profile, pile batter, pile type, levee slope, T-wall elevation, and the presence of existing levee fill. In addition, the key results for all of the analyses are provided in the appendices and in an electronic database. Based on the parametric study results, a simplified analysis procedure was developed that can be used to calculated maximum pile bending moments for T walls installed directly on foundation soils due to settlements. In this procedure, the loads from new fill placed during or after T-wall construction are distributed onto the pile, and the pile response is analyzed using traditional p-y curves and a beam on elastic foundation formulation. This procedure shows good agreement with the numerical model results for a range of conditions. To demonstrate the application of the procedure, the same example problem that is analyzed numerically is reanalyzed using the simplified analysis procedure. Due to the complexity of the problem, it was not possible to modify this procedure or develop a similar procedure for T-walls installed on top of new or existing levees. Overall, this research demonstrates that numerical models can be used to calculate the bending moments that can develop in pile-supported T-walls due to settlements and flood loading, provides valuable insights into the behavior of T-walls and the influence of various parameters on T-wall response, presents a large database of T-wall analysis results, and recommends a simplified analysis procedure that can be used in some cases to calculate pile bending moments due to settlements. / Ph. D.
17

Comportamento de um solo residual levemente cimentado : estimativa de capacidade de carga para estacas submetidas a esforços transversais

Carretta, Mariana da Silva January 2018 (has links)
Fundações profundas, quando solicitadas ao carregamento lateral, são regidas por três critérios de projeto: resistência última do solo, carga última do elemento estrutural e deflexão máxima. Esses critérios atuam em conjunto e é necessário que sejam analisados dessa forma, visto que a falha de um deles é capaz de acarretar o colapso de todo sistema. No que tange à resistência do solo, metodologias de capacidade de carga existentes traduzem o comportamento de solos granulares e coesivos. Dada a particularidade da atuação de solos residuais na mecânica dos solos, não há uma metodologia abrangente para estacas sujeitas a solicitação de carregamento lateral nesse tipo de solo, o qual apresenta comportamento intermediário e estrutura levemente cimentada. Em vista disso, o presente trabalho propõe um método de estimativa de capacidade de carga para estacas carregadas horizontalmente, quando inseridas em solo residual e em casos em que as mesmas apresentam topo locado em superfície de solo tratado. Dessa forma, dados de provas de carga lateral pré-existentes e ensaios de laboratório executados ao longo da pesquisa serviram como base para a proposição do método, fundamentado no comportamento do material quando solicitado ao carregamento lateral Ensaios de resistência à compressão simples, compressão oedométrica, compressão isotrópica e ensaios triaxiais com medidas de módulo cisalhante demonstram que há um ponto em que se dá a quebra da estrutura cimentada do solo, passando o mesmo a se apresentar num arranjo desestruturado, refletido em maiores deformações. Uma relação linear é capaz de equacionar a capacidade de carga, tanto para estacas inseridas em solo residual quanto para estacas executadas em solo com camada superficial melhorada. Essa relação é estabelecida entre a carga de ruptura das estacas ensaiadas e a área de solo adjacente à mesma, mobilizada pelo carregamento. Os resultados demonstram que a capacidade de carga das estacas estudadas é regida pela tensão de plastificação do material. O equacionamento proposto possibilita a obtenção da carga de ruptura com base em ensaios simples e de fácil execução, tal como o ensaio de resistência à compressão simples que estabelece relação direta com a tensão de plastificação do solo estudado. / Deep foundations, when requested to lateral loading, are governed by three design criteria: ultimate soil strength, piles’ ultimate load, and maximum deflection. These criteria act together and must be analyzed in this way, since the failure of one of them is capable of causing the collapse of the entire system. Regarding soil resistance, the current bearing capacity methodologies describe the behavior of granular and cohesive soils. Given the particular behavior of the residual soils in the soil mechanics, there is no comprehensive methodology for piles subject to lateral loads and inserted in this soil type, which presents an intermediate behavior and a lightly cemented structure. Thus, the present work proposes an estimated bearing capacity for crosswise loaded piles, when inserted in residual soil and in soil with the top layer cemented. So, data from preexisting lateral loading tests and laboratory tests, performed during the research, served as a basis for the proposition of the method, based on the behavior of the material when requested to lateral loading Unconfined compression tests, oedometer consolidation tests, isotropic compression, and triaxial tests with measures of shear modulus demonstrate that there is a point where the soil's cemented structure breaks down, presenting itself in a destructured arrangement, reflected by larger strains. A linear relationship is capable of equating the bearing capacity for both, piles inserted in residual soil and piles carried out in soil with improved surface layer. This relationship is established between the rupture load of the piles tested and the area of soil adjacent to it mobilized by the loading. The results shows that the piles' bearing capacity is governed by the yield stress of the material. The proposed equation makes it possible to obtain the rupture load based on simple and easy tests, such as the unconfined compression test that establishes a direct relationship with the yield stress of the studied soil.
18

Efeito de grupo em estacas carregadas transversalmente associadas a solos melhorados

Born, Ricardo Bergan January 2015 (has links)
O conjunto estaca-solo submetido a carregamentos horizontais é caracterizado por um comportamento não-linear. A propagação das tensões no solo próximo à estaca decai rapidamente em função do espaçamento, porém para estacas próximas, caracterizando um grupo de estacas, pode haver uma sobreposição de tensões, gerando zonas com tensões elevadas, que formam áreas de plastificação maiores. A interação da sobreposição destas zonas plastificadas, resultam em maiores deformações para o grupo de estacas, ante comparadas com o equivalente de soma da capacidade individual de cada estaca (Chaudhry, 1994). Deste comportamento, deriva-se o chamado efeito de grupo, que age como um redutor da eficiência total das estacas. Através de modelos numéricos tridimensionais, avaliou-se o efeito de espaçamento entre estacas em solo natural, onde fatores de eficiência do grupo foram propostos. O comportamento de estacas carregadas lateralmente é conhecido por ter seu comportamento diretamente relacionado com as características da parte superior do solo. Recomendações feitas há mais de 30 anos já lidavam com este comportamento {e.g. Simons eMenzies (1975); Broms (1972)}, e tratavam com soluções que melhoravam a capacidade de carga lateral, com a substituição da parte superior do solo por um material mais rígido. Embora estas soluções melhorassem a capacidade de carga lateral, a técnica reflete uma prática de substituição de material. Neste trabalho, uma técnica de melhoramento de solo, lidando com areia cimentada é apresentada, estudando numericamente o comportamento de grupos de estacas submetidos a carregamentos laterais. As conclusões apontam fatores de eficiência próximos a unidade em espaçamentos superiores a 6 diâmetros, porém com a tendência a inexistir somente em espaçamentos superiores a 10 diâmetros. A inserção da camada de solo cimento no topo do grupo de estaca, mostrou uma expressiva melhora de seu comportamento, eliminando por total a perda de eficiência devido ao efeito de grupo. / The soil-pile set when subjected to lateral loads is characterized by a non-linear behavior. The stress distribution on the soil near the pile decays rapidly in magnitude with radial distance, but for closely spaced piles within a group, these yielded zones of the soil around individual piles overlap, forming larger yielded zones in the soil surrounding the pile group. The interaction arising due to overlapping of these yielded zones results in a larger deflection for the group of piles before the lateral resistance equivalent to that for a single pile (Chaudhry, 1994). Based on this behavior, the group effect is derived, which acts as a reducer of the piles efficiency. Through tridimensional numerical models, the effects of the pile spacing in natural soil were evaluated, and group efficiency factors had been proposed. The behavior of laterally loaded piles is well known to be straightly related to characteristics of the upper part of the soil. Recommendations of over 30 years in past already dealt with this behavior {e.g. Simons and Menzies (1975); Broms (1972)}, and treated with solutions that improved the lateral resistance, by substituting the upper part of the soil with a more rigid material. Besides those solutions improved the lateral resistance, the technique reflects a practice of material replacement. Here, a ground improvement technique, dealing with cemented sand is presented, studying numerically the behavior of piles subjected to lateral forces. Conclusions shows group efficiency factors close to unity on spacing larger than 6 diameters, but tending to disappear only on spacing larger than 10 diameters. The insertion of a soil cement layer on the top of the pile group has shown an expressive improvement on its behavior, eliminating the loss of efficiency due to the group effect.
19

Efeito de grupo em estacas carregadas transversalmente associadas a solos melhorados

Born, Ricardo Bergan January 2015 (has links)
O conjunto estaca-solo submetido a carregamentos horizontais é caracterizado por um comportamento não-linear. A propagação das tensões no solo próximo à estaca decai rapidamente em função do espaçamento, porém para estacas próximas, caracterizando um grupo de estacas, pode haver uma sobreposição de tensões, gerando zonas com tensões elevadas, que formam áreas de plastificação maiores. A interação da sobreposição destas zonas plastificadas, resultam em maiores deformações para o grupo de estacas, ante comparadas com o equivalente de soma da capacidade individual de cada estaca (Chaudhry, 1994). Deste comportamento, deriva-se o chamado efeito de grupo, que age como um redutor da eficiência total das estacas. Através de modelos numéricos tridimensionais, avaliou-se o efeito de espaçamento entre estacas em solo natural, onde fatores de eficiência do grupo foram propostos. O comportamento de estacas carregadas lateralmente é conhecido por ter seu comportamento diretamente relacionado com as características da parte superior do solo. Recomendações feitas há mais de 30 anos já lidavam com este comportamento {e.g. Simons eMenzies (1975); Broms (1972)}, e tratavam com soluções que melhoravam a capacidade de carga lateral, com a substituição da parte superior do solo por um material mais rígido. Embora estas soluções melhorassem a capacidade de carga lateral, a técnica reflete uma prática de substituição de material. Neste trabalho, uma técnica de melhoramento de solo, lidando com areia cimentada é apresentada, estudando numericamente o comportamento de grupos de estacas submetidos a carregamentos laterais. As conclusões apontam fatores de eficiência próximos a unidade em espaçamentos superiores a 6 diâmetros, porém com a tendência a inexistir somente em espaçamentos superiores a 10 diâmetros. A inserção da camada de solo cimento no topo do grupo de estaca, mostrou uma expressiva melhora de seu comportamento, eliminando por total a perda de eficiência devido ao efeito de grupo. / The soil-pile set when subjected to lateral loads is characterized by a non-linear behavior. The stress distribution on the soil near the pile decays rapidly in magnitude with radial distance, but for closely spaced piles within a group, these yielded zones of the soil around individual piles overlap, forming larger yielded zones in the soil surrounding the pile group. The interaction arising due to overlapping of these yielded zones results in a larger deflection for the group of piles before the lateral resistance equivalent to that for a single pile (Chaudhry, 1994). Based on this behavior, the group effect is derived, which acts as a reducer of the piles efficiency. Through tridimensional numerical models, the effects of the pile spacing in natural soil were evaluated, and group efficiency factors had been proposed. The behavior of laterally loaded piles is well known to be straightly related to characteristics of the upper part of the soil. Recommendations of over 30 years in past already dealt with this behavior {e.g. Simons and Menzies (1975); Broms (1972)}, and treated with solutions that improved the lateral resistance, by substituting the upper part of the soil with a more rigid material. Besides those solutions improved the lateral resistance, the technique reflects a practice of material replacement. Here, a ground improvement technique, dealing with cemented sand is presented, studying numerically the behavior of piles subjected to lateral forces. Conclusions shows group efficiency factors close to unity on spacing larger than 6 diameters, but tending to disappear only on spacing larger than 10 diameters. The insertion of a soil cement layer on the top of the pile group has shown an expressive improvement on its behavior, eliminating the loss of efficiency due to the group effect.
20

Comportamento de um solo residual levemente cimentado : estimativa de capacidade de carga para estacas submetidas a esforços transversais

Carretta, Mariana da Silva January 2018 (has links)
Fundações profundas, quando solicitadas ao carregamento lateral, são regidas por três critérios de projeto: resistência última do solo, carga última do elemento estrutural e deflexão máxima. Esses critérios atuam em conjunto e é necessário que sejam analisados dessa forma, visto que a falha de um deles é capaz de acarretar o colapso de todo sistema. No que tange à resistência do solo, metodologias de capacidade de carga existentes traduzem o comportamento de solos granulares e coesivos. Dada a particularidade da atuação de solos residuais na mecânica dos solos, não há uma metodologia abrangente para estacas sujeitas a solicitação de carregamento lateral nesse tipo de solo, o qual apresenta comportamento intermediário e estrutura levemente cimentada. Em vista disso, o presente trabalho propõe um método de estimativa de capacidade de carga para estacas carregadas horizontalmente, quando inseridas em solo residual e em casos em que as mesmas apresentam topo locado em superfície de solo tratado. Dessa forma, dados de provas de carga lateral pré-existentes e ensaios de laboratório executados ao longo da pesquisa serviram como base para a proposição do método, fundamentado no comportamento do material quando solicitado ao carregamento lateral Ensaios de resistência à compressão simples, compressão oedométrica, compressão isotrópica e ensaios triaxiais com medidas de módulo cisalhante demonstram que há um ponto em que se dá a quebra da estrutura cimentada do solo, passando o mesmo a se apresentar num arranjo desestruturado, refletido em maiores deformações. Uma relação linear é capaz de equacionar a capacidade de carga, tanto para estacas inseridas em solo residual quanto para estacas executadas em solo com camada superficial melhorada. Essa relação é estabelecida entre a carga de ruptura das estacas ensaiadas e a área de solo adjacente à mesma, mobilizada pelo carregamento. Os resultados demonstram que a capacidade de carga das estacas estudadas é regida pela tensão de plastificação do material. O equacionamento proposto possibilita a obtenção da carga de ruptura com base em ensaios simples e de fácil execução, tal como o ensaio de resistência à compressão simples que estabelece relação direta com a tensão de plastificação do solo estudado. / Deep foundations, when requested to lateral loading, are governed by three design criteria: ultimate soil strength, piles’ ultimate load, and maximum deflection. These criteria act together and must be analyzed in this way, since the failure of one of them is capable of causing the collapse of the entire system. Regarding soil resistance, the current bearing capacity methodologies describe the behavior of granular and cohesive soils. Given the particular behavior of the residual soils in the soil mechanics, there is no comprehensive methodology for piles subject to lateral loads and inserted in this soil type, which presents an intermediate behavior and a lightly cemented structure. Thus, the present work proposes an estimated bearing capacity for crosswise loaded piles, when inserted in residual soil and in soil with the top layer cemented. So, data from preexisting lateral loading tests and laboratory tests, performed during the research, served as a basis for the proposition of the method, based on the behavior of the material when requested to lateral loading Unconfined compression tests, oedometer consolidation tests, isotropic compression, and triaxial tests with measures of shear modulus demonstrate that there is a point where the soil's cemented structure breaks down, presenting itself in a destructured arrangement, reflected by larger strains. A linear relationship is capable of equating the bearing capacity for both, piles inserted in residual soil and piles carried out in soil with improved surface layer. This relationship is established between the rupture load of the piles tested and the area of soil adjacent to it mobilized by the loading. The results shows that the piles' bearing capacity is governed by the yield stress of the material. The proposed equation makes it possible to obtain the rupture load based on simple and easy tests, such as the unconfined compression test that establishes a direct relationship with the yield stress of the studied soil.

Page generated in 0.1455 seconds