Spelling suggestions: "subject:"latrodectus hesperidin"" "subject:"latrodectus hesperidina""
1 |
Characterization of Egg Case Silk and Spider Silk Gene Transcription in Black Widow SpidersDyrness, Simmone Olivia 01 January 2017 (has links)
Spiders are able to spin a variety of silk types for various purposes, each with their own unique properties. The mechanical properties of spider silk out-perform the mechanical properties of many man-made materials we use today, including tensile steel, KevlarTM, and nylon. To further understand the proteins the silks are made of and how they are synthesized in the silk glands, transcriptional and proteomic analysis was conducted. Transcriptional regulation of silk genes was investigated to determine how and why several silk proteins are transcribed into mRNA products together in the same gland. The tubuliform gland is one of the major contributors of egg case silk production. The mRNA of major ampullate spidroins 1 and 2 (MaSp1, MaSp2) and tubuliform spidroin 1 (TuSp1) is found in the tubuliform glands, but not all are translated into proteins for egg case silk purposes. To understand why not all of the transcribed mRNA products are not being translated into proteins, the promoter sequences of MaSp1, MaSp2, and TuSp1 were aligned and found to contain an E-Box site. Several constructs containing the cDNA of the promoter sequences and cDNA of bHLH transcription factors were built to test transcriptional regulation of MaSp1, MaSp2, and TuSp1. Proteomic analysis of egg case silk and the tubuliform glands was also conducted to identify further proteins synthesized in the tubuliform glands and to determine which of these proteins are ultimately incorporated into the egg case silk fibers by MS/MS analysis. Multiple silk proteins were identified within the tubuliform glands and incorporated into the egg case fibers, suggesting silks are composite fibers of multiple spidroins.
|
2 |
Isolation and Characterization of a New Family of Cysteine Rich Proteins Involved in the Assembly Process of Dragline Silk from the Black Widow Spider, Latrodectus HesperusPham, Thanh Due 01 January 2013 (has links) (PDF)
Spider silks are protein-based fibers that possess remarkable mechanical properties. Major ampullate silk, also referred to as dragline silk, is renowned for its high tensile strength, extensibility and toughness. Dragline silk is produced from a liquid spinning dope that undergoes chemical and physical changes during extrusion. To date, no proteins that participate in the assembly process of major ampullate silk proteins have been identified. The goal of this project is the identification of such protein products. De novo sequencing of peptides from in pollution tryptic digestion of black widow spider dragline silk identified several novel peptides that were not derived from the full-length primary sequences of the major ampulate fibroins, MaSpl and MaSpl. One of the peptides corresponded to a region within a translated cDNA retrieved from a library constructed from silk-producing glands.
|
3 |
Study of Physical Protein-Protein Interactions Between the MaSp1 C-Terminal Domain and Small Cysteine-Rich Proteins Found in the Major Ampullate Gland of Latrodectus hesperusRabara, Taylor Renee 01 January 2016 (has links)
Spiders spin a wide variety of different silk types with different biological functions that are known for their extraordinary mechanical properties. Dragline silk has predominantly captured the interest of researchers because it exhibits high tensile strength and toughness while maintaining its elasticity. This thesis has focused on the characterization of a family of small molecular weight proteins recently discovered in dragline silk. These proteins were discovered in the western black widow spider, Latrodectus hesperus, and have been termed Cysteine-Rich Proteins (CRPs) due to their high conserved cysteine content. CRP family members were used in protein-protein interaction studies to determine if there is any interaction with the major ampullate spidroins (MaSps). After affinity chromatography and co-expression studies in bacteria, there were no detectable interactions between the CRPs and MaSp1. Further studies
which could be an important role in the natural silk assembly process. Further protein interaction studies in different salt and pH conditions can further determine the function of the CRPs in dragline silk formation.
|
4 |
De novo peptide sequencing of spider silk proteins by mass spectrometry and discovery of novel fibroin genesHu, Xiaoyi 01 January 2004 (has links) (PDF)
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In this study we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus , whose DNA coding sequences have not been reported. Based upon solubility differences in 8 M guanidine hydrochloride, it is demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver staining that the egg case silk is relatively complex at the molecular level, containing a large number of proteins with differing molecular weights. Protein components of egg case silk with a size about 100 kDa were obtained by a solubilization time course study, which indicates these proteins are likely to be embedded in the silk filament. Peptides in these 100 kDa proteins were released by tryptic in-gel and in-solution digestion. The peptides were sequenced using a MALDI tandem TOF mass spectrometer. Some of the de novo sequences were confirmed using a linear ion trap mass spectrometer equipped with a nanospray ion source. Combining the peptide sequences obtained, reverse genetics was employed to trace silk genes encoding proteins containing these de novo peptides. Three silk protein coding sequences were successfully discovered, which encode silk proteins named 3B, T1 and ECSP-1, respectively. 3B and T1 show the standard fibroin protein pattern. Amino acid repeat patterns were observed in these two silk clones. But the amino acid compositions of 3B and T1 show differences with the total amino acid composition of egg case silk, and also, the peptide sequences cannot be found in the primary amino acid sequences of 3B and T1. ECSP-1 protein represents one of the egg case silk proteins with a size of about 100 kDa. A number of peptide sequences obtained by mass spectrometric de novo sequencing were successfully located in ECSP-1's primary amino acid sequence. Sequence analysis demonstrates ECSP-1 represents a new class of silk proteins, with fibroin-like properties. The expression pattern of ecsp-1 is largely restricted to the tubuliform gland inside of the L. hesperus spider, with lower levels detected in the major and minor ampullate glands, which also confirms the identity of ECSP-1. It is also demonstrated that ECSP-1 assembles into higher aggregate structures through the formation of disulfide bonds. Peptide sequences from silk proteins from the Tarantula spider Grammostola rosea were also obtained. These sequences will be beneficial in obtaining genes encoding the silk from this spider species.
|
5 |
Development of a codon-optimized Latrodectus hesperus MaSp1 synthetic gene for bacterial protein expression using a seamless cloning strategyMendoza, J. Alexander Hoang 01 January 2015 (has links)
Spider silk has outstanding mechanical properties, displaying high tensile strength and extensibility. The unique combination of strength and great extensibility make it one of the toughest materials in the world. Of the seven different spider silks, dragline silk, the lifeline silk of the spider, represents one of the most renowned fiber types that has extraordinary properties. As a result, many labs across the globe are racing to manufacture synthetic dragline silk fibers. With the production of synthetic dragline silk fibers, there are unlimited commercial applications. In this study, we developed several codon-optimized MaSp1 minifibroin constructs for recombinant protein expression in bacteria. These recombinant MaSp1 minifibroin constructs were engineered to contain the N-terminal domain (NTD), different copies of internal block repeats (ranging from 2 to 64 copies of 35 amino acid blocks), and the C-terminal domain (CTD). The NTD and CTDs were derived from the natural cDNA sequences of black widow spiders, while the internal block repeats were generated from synthetic DNA fragments that were codon-optimized for expression in Escherichia coli . Different numbers of internal block repeats were created using a specialized seamless cloning strategy. By applying this seamless cloning strategy, we successfully multimerized MaSp1 block repeats that approach the natural fibroin size. Moreover, through the construction of a customized NTD-CTD spidroin construct, multimerized block repeats from any fibroin can be rapidly inserted to facilitate minifibroin protein expression in bacteria. Overall, this strategy as well as the created vectors, should help advance the silk community in the production of synthetic silk fibers that have properties that more closely resemble natural fibers.
|
Page generated in 0.0553 seconds