• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Density and equidistribution of integer points

Gorodnyk, Oleksandr 07 August 2003 (has links)
No description available.
2

The length of conjugators in solvable groups and lattices of semisimple Lie groups

Sale, Andrew W. January 2012 (has links)
The conjugacy length function of a group Γ determines, for a given a pair of conjugate elements u,v ∈ Γ, an upper bound for the shortest γ in Γ such that uγ = γv, relative to the lengths of u and v. This thesis focuses on estimating the conjugacy length function in certain finitely generated groups. We first look at a collection of solvable groups. We see how the lamplighter groups have a linear conjugacy length function; we find a cubic upper bound for free solvable groups; for solvable Baumslag--Solitar groups it is linear, while for a larger family of abelian-by-cyclic groups we get either a linear or exponential upper bound; also we show that for certain polycyclic metabelian groups it is at most exponential. We also investigate how taking a wreath product effects conjugacy length, as well as other group extensions. The Magnus embedding is an important tool in the study of free solvable groups. It embeds a free solvable group into a wreath product of a free abelian group and a free solvable group of shorter derived length. Within this thesis we show that the Magnus embedding is a quasi-isometric embedding. This result is not only used for obtaining an upper bound on the conjugacy length function of free solvable groups, but also for giving a lower bound for their L<sub>p</sub> compression exponents. Conjugacy length is also studied between certain types of elements in lattices of higher-rank semisimple real Lie groups. In particular we obtain linear upper bounds for the length of a conjugator from the ambient Lie group within certain families of real hyperbolic elements and unipotent elements. For the former we use the geometry of the associated symmetric space, while for the latter algebraic techniques are employed.
3

Représentations de groupes fondamentaux en géométrie hyperbolique / Representations of fundamental groups in hyperbolic geometry

Dashyan, Ruben 09 November 2017 (has links)
Deux méthodes de construction de représentations de groupes sont présentées. La première propose une stratégie essayant de déterminer les représentations de groupes libres de type fini à valeurs dans tout réseau de groupes de Lie réel. La seconde, après avoir revu une construction d'une surface hyperbolique complexe, c'est-à-dire le quotient du plan hyperbolique complexe par un réseau, et examiné soigneusement ses propriétés, produit une infinité de représentations non-conjuguées, à valeurs dans un réseau du groupe des isométries du plan hyperbolique complexe, de groupes fondamentaux de variétés hyperboliques fermées de dimension 3, obtenues comme des fibrés en surfaces sur le cercle. / Two construction methods of group representations are presented. The first one proposes a strategy to try to determine the representations of finitely generated free groups into any lattice in real Lie groups. The second, after reviewing a construction of a complex hyperbolic surface, that is the quotient of the complex hyperbolic plane by a lattice, and examining its properties carefully, yields infinitely many non-conjugate representations into a lattice in the group of isometries of the complex hyperbolic plane, of fundamental groups of closed hyperbolic 3-dimensional manifolds, obtained as surface bundles over the circle.
4

Invariants globaux des variétés hyperboliques quaterioniques / Global invariants of quaternionic hyperbolic spaces

Philippe, Zoe 15 December 2016 (has links)
Dans une première partie de cette thèse, nous donnons des minorations universelles ne dépendant que de la dimension – explicites, de trois invariants globaux des quotients des espaces hyperboliques quaternioniques : leur rayon maximal, leur volume, ainsi que leur caractéristique d’Euler. Nous donnons également une majoration de leur constante de Margulis, montrant que celle-ci décroit au moins comme une puissance négative de la dimension. Dans une seconde partie, nous étudions un réseau remarquable des isométries du plan hyperbolique quaternionique, le groupe modulaire d’Hurwitz. Nous montrons en particulier qu’il est engendré par quatres éléments, et construisons un domaine fondamental pour le sous-groupe des isométries de ce réseau qui stabilisent un point à l’infini. / In the first part of this thesis, we derive explicit universal – that is, depending only on the dimension – lower bounds on three global invariants of quaternionic hyperbolic sapces : their maximal radius, their volume, and their Euler caracteristic. We also exhibit an upper bound on their Margulis constant, showing that this last quantity decreases at least like a negative power of the dimension. In the second part, we study a specific lattice of isometries of the quaternionic hyperbolic plane : the Hurwitz modular group. In particular, we show that this group is generated by four elements, and we construct a fundamental domain for the subgroup of isometries of this lattice stabilising a point on the boundary of the quaternionic hyperbolic plane.

Page generated in 0.0996 seconds